python mediapipe opencv手势识别

网友投稿 448 2022-06-06


一、mediapipe是什么?

mediapipe官网

二、使用步骤

1.引入库

代码如下:

import cv2
from mediapipe import solutions
import time

2.主代码

代码如下:

cap = cv2.VideoCapture(0)
mpHands = solutions.hands
hands = mpHands.Hands()
mpDraw = solutions.drawing_utils
pTime = 0
count = 0
while True:
    success, img = cap.read()
    imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    results = hands.process(imgRGB)
    if results.multi_hand_landmarks:
        for handLms in results.multi_hand_landmarks:
            mpDraw.draw_landmarks(img, handLms, mpHands.HAND_CONNECTIONS)
    cTime = time.time()
    fps = 1 / (cTime - pTime)
    pTime = cTime
    cv2.putText(img, str(int(fps)), (25, 50), cv2.FONT_HERSHEY_PLAIN, 2, (255, 0, 0), 3)
    cv2.imshow("Image", img)
    cv2.waitKey(1)

3.识别结果

以上就是今天要讲的内容,本文仅仅简单介绍了mediapipe的使用,而mediapipe提供了大量关于图像识别等的方法。

补充:

下面看下基于mediapipe人脸网状识别。

1.下载mediapipe库:

pip install mediapipe

2.完整代码:

import cv2
import mediapipe as mp
import time
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
cap = cv2.VideoCapture("3.mp4")
with mp_face_mesh.FaceMesh(
    min_detection_confidence=0.5,
    min_tracking_confidence=0.5) as face_mesh:
  while cap.isOpened():
    success, image = cap.read()
    if not success:
      print("Ignoring empty camera frame.")
      # If loading a video, use 'break' instead of 'continue'.
      continue
    # Flip the image horizontally for a later selfie-view display, and convert
    # the BGR image to RGB.
    image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
    # To improve performance, optionally mark the image as not writeable to
    # pass by reference.
    image.flags.writeable = False
    results = face_mesh.process(image)
    time.sleep(0.02)
    # Draw the face mesh annotations on the image.
    image.flags.writeable = True
    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    if results.multi_face_landmarks:
      for face_landmarks in results.multi_face_landmarks:
        mp_drawing.draw_landmarks(
            image=image,
            landmark_list=face_landmarks,
            connections=mp_face_mesh.FACE_CONNECTIONS,
            landmark_drawing_spec=drawing_spec,
            connection_drawing_spec=drawing_spec)
    cv2.imshow('MediaPipe FaceMesh', image)
    if cv2.waitKey(5) & 0xFF == 27:
      break
cap.release()


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Mediapipe Opencv手势检测
下一篇:Swagger @API tags中含有中文异常
相关文章

 发表评论

暂时没有评论,来抢沙发吧~