elasticsearch的zenDiscovery和master选举机制原理分析

网友投稿 379 2022-08-03


elasticsearch的zenDiscovery和master选举机制原理分析

目录前言join的代码findMaster方法总结

前言

上一篇通过 ElectMasterService源码,分析了master选举的原理的大部分内容:master候选节点ID排序保证选举一致性及通过设置最小可见候选节点数目避免brain split。节点排序后选举只能保证局部一致性,如果发生节点接收到了错误的集群状态就会选举出错误的master,因此必须有其它措施来保证选举的一致性。这就是上一篇所提到的第二点:被选举的数量达到一定的数目同时自己也选举自己,这个节点才能成为master。这一点体现在zenDiscovery中,本篇将结合节点的发现过程进一步介绍master选举机制。

节点启动后首先启动join线程,join线程会寻找cluster的master节点,如果集群之前已经启动,并且运行良好,则试图连接集群的master节点,加入集群。否则(集群正在启动)选举master节点,如果自己被选为master,则向集群中其它节点发送一个集群状态更新的task,如果master是其它节点则试图加入该集群。

join的代码

private void innerJoinCluster() {

DiscoveryNode masterNode = null;

final Thread currentThread = Thread.currentThread();

     //一直阻塞直到找到master节点,在集群刚刚启动,或者集群master丢失的情况,这种阻塞能够保证集群一致性

while (masterNode == null && joinThreadControl.joinThreadActive(currentThread)) {

masterNode = findMaster();

}

      //有可能自己会被选举为master(集群启动,或者加入时正在选举)

      if (clusterService.localNode().equals(masterNode)) {

      //如果本身是master,则需要向其它所有节点发送集群状态更新

clusterService.submitStateUpdateTask("zen-disco-join (elected_as_master)", Priority.IMMEDIATE, new ProcessedClusterStateNonMasterUpdateTask() {

@Override

public ClusterState execute(ClusterState currentState) {

            //选举时错误的,之前的master状态良好,则不更新状态,仍旧使用之前状态。

if (currentState.nodes().masterNode() != null) {

return currentState;

}

DiscoveryNodes.Builder builder = new DiscoveryNodes.Builder(currentState.nodes()).masterNodeId(currentState.nodes().localNode().id());

// update the fact that we are the master...

ClusterBlocks clusterBlocks = ClusterBlocks.builder().blocks(currentState.blocks()).removeGlobalBlock(QWnardiscoverySettings.getNoMasterBlock()).build();

currentState = ClusterState.builder(currentState).nodes(builder).blocks(clusterBlocks).build();

// eagerly run reroute to remove dead nodes from routing table

RoutingAllocation.Result result = allocationService.reroute(currentState);

return ClusterState.builder(currentState).routingResult(result).build();

}

@Override

public void onFailure(String source, Throwable t) {

logger.error("unexpected failure during [{}]", t, source);

joinThreadControl.markThreadAsDoneAndStartNew(currentThread);

}

@Override

public void clusterStatePhttp://rocessed(String source, ClusterState oldState, ClusterState newState) {

if (newState.nodes().localNodeMaster()) {

// we only starts nodesFD if we are master (it may be that we received a cluster state while pinging)

joinThreadControl.markThreadAsDone(currentThread);

nodesFD.updateNodesAndPing(newState); // start the nodes FD

} else {

// if we're not a master it means another node published a cluster state while we were pinging

// make sure we go through another pinging round and actively join it

joinThreadControl.markThreadAsDoneAndStartNew(currentThread);

}

sendInitialStateEventIfNeeded();

long count = clusterJoinsCounter.incrementAndGet();

logger.trace("cluster joins counter set to [{}] (elected as master)", count);

}

});

} else {

// 找到的节点不是我,试图连接该master

final boolean success = joinElectedMaster(masterNode);

// finalize join through the cluster state update thread

final DiscoveryNode finalMasterNode = masterNode;

clusterService.submitStateUpdateTask("finalize_join (" + masterNode + ")", new ClusterStateNonMasterUpdateTask() {

@Override

public ClusterState execute(ClusterState currentState) throws Exception {

if (!success) {

// failed to join. Try again...

joinThreadControl.markThreadAsDoneAndStartNew(currentThread);

return currentState;

}

if (currentState.getNodes().masterNode() == null) {

// Post 1.3.0, the master should publish a new cluster state before acking our join request. we now should have

// a valid master.

logger.debug("no master node is set, despite of join request completing. retrying pings.");

joinThreadControl.markThreadAsDoneAndStartNew(currentThread);

return currentState;

}

if (!currentState.gehttp://tNodes().masterNode().equals(finalMasterNode)) {

return joinThreadControl.stopRunningThreadAndRejoin(currentState, "master_switched_while_finalizing_join");

}

// Note: we do not have to start master fault detection here because it's set at {@link #handleNewClusterStateFromMaster }

// when the first cluster state arrives.

joinThreadControl.markThreadAsDone(currentThread);

return currentState;

}

@Override

public void onFailure(String source, @Nullable Throwable t) {

logger.error("unexpected error while trying to finalize cluster join", t);

joinThreadControl.markThreadAsDoneAndStartNew(currentThread);

}

});

}

}

以上就是join的过程。zenDiscovery在启动时会启动一个join线程,这个线程调用了该方法。同时在节点离开,master丢失等情况下也会重启这一线程仍然运行join方法。

findMaster方法

这个方法体现了master选举的机制。代码如下:

private DiscoveryNode findMaster() {

      //ping集群中的节点

ZenPing.PingResponse[] fullPingResponses = pingService.pingAndWait(pingTimeout);

if (fullPingResponses == null) {return null;

}// 过滤所得到的ping响应,虑除client节点,单纯的data节点

List pingResponses = Lists.newArrayList();

for (ZenPing.PingResponse pingResponse : fullPingResponses) {

DiscoveryNode node = pingResponse.node();

if (masterElectionFilterClientNodes && (node.clientNode() || (!node.masterNode() && !node.dataNode()))) {

// filter out the client node, which is a client node, or also one that is not data and not master (effectively, client)

} else if (masterElectionFilterDataNodes && (!node.masterNode() && node.dataNode())) {

// filter out data node that is not also master

} else {

pingResponses.add(pingResponse);

}

}

final DiscoveryNode localNode = clusterService.localNode();

List pingMasters = newArrayList();

     //获取所有ping响应中的master节点,如果master节点是节点本身则过滤掉。pingMasters列表结果要么为空(本节点是master)要么是同一个节点(出现不同节点则集群出现了问题

不过没关系,后面会进行选举)

for (ZenPing.PingResponse pingResponse : pingResponses) {

if (pingResponse.master() != null) {

if (!localNode.equals(pingResponse.master())) {

pingMasters.add(pingResponse.master());

}

}

}

// nodes discovered during pinging

Set activeNodes = Sets.newHashSet();

// nodes discovered who has previously been part of the cluster and do not ping for the very first time

Set joinedOnceActiveNodes = Sets.newHashSet();

Version minimumPingVersion = localNode.version();

    for (ZenPing.PingResponse pingResponse : pingResponses) {

     activeNodes.add(pingResponse.node());

    minimumPingVersion = Version.smallest(pingResponse.node().version(), minimumPingVersion);

    if (pingResponse.hasJoinedOnce() != null && pingResponse.hasJoinedOnce()) {

  joinedOnceActiveNodes.add(pingResponse.node());

    }

    }

//本节点暂时是master也要加入候选节点进行选举

if (localNode.masterNode()) {

activeNodes.add(localNode);

long joinsCounter = clusterJoinsCounter.get();

if (joinsCounter > 0) {

logger.trace("adding local node to the list of active nodes who has previously joined the cluster (joins counter is [{}})", joinsCounter);

joinedOnceActiveNodes.add(localNode);

}

}

      //pingMasters为空,则本节点是master节点,

    if (pingMasters.isEmpty()) {

if (electMaster.hasEnoughMasterNodes(activeNodes)) {//保证选举数量,说明有足够多的节点选举本节点为master,但是这还不够,本节点还需要再选举一次,如果

          本次选举节点仍旧是自己,那么本节点才能成为master。这里就体现了master选举的第二条原则。

DiscoveryNode master = electMaster.electMaster(joinedOnceActiveNodes);

if (master != null) {

return master;

}

return electMaster.electMaster(activeNodes);

} else {

// if we don't have enough master nodes, we bail, because there are not enough master to elect from

logger.trace("not enough master nodes [{}]", activeNodes);

return null;

}

} else {

        //phttp://ingMasters不为空(pingMasters列表中应该都是同一个节点),本节点没有被选举为master,那就接受之前的选举。

return electMaster.electMaster(pingMasters);

}

}

上面的重点部分都做了标注,就不再分析。除了findMaster方法,还有一个方法也体现了master选举,那就是handleMasterGone。下面是它的部分代码,提交master丢失task部分,

clusterService.submitStateUpdateTask("zen-disco-master_failed (" + masterNode + ")", Priority.IMMEDIATE,newProcessedClusterStateNonMasterUpdateTask() {

      @Override

public ClusterState execute(ClusterState currentState) {

//获取到当前集群状态下的所有节点

DiscoveryNodes discoveryNodes = DiscoveryNodes.builder(currentState.nodes())

// make sure the old master node, which has failed, is not part of the nodes we publish

.remove(masterNode.id())

.masterNodeId(null).build();

          //rejoin过程仍然是重复findMaster过程

          if (rejoin) {

return rejoin(ClusterState.builder(currentState).nodes(discoveryNodes).build(), "master left (reason = " + reason + ")");

}

          //无法达到选举数量,进行findMaster过程

if (!electMaster.hasEnoughMasterNodes(discoveryNodes)) {

return rejoin(ClusterState.builder(currentState).nodes(discoveryNodes).build(), "not enough master nodes after master left (reason = " + reason + ")");

}

          //在当前集群状态下,如果候选节点数量达到预期数量,那么选举出来的节点一定是同一个节点,因为所有的节点看到的集群states是一致的

final DiscoveryNode electedMaster = electMaster.electMaster(discoveryNodes); // elect master

final DiscoveryNode localNode = currentState.nodes().localNode();

....

}

从以上的代码可以看到master选举节点的应用场景,无论是findMaster还是handlemasterGone,他们都保证了选举一致性。那就是所选节点数量必须要达到一定的数量,否则不能认为选举成功,进入等待环境。如果当前节点被其它节点选举为master,仍然要进行选举一次以保证选举的一致性。这样在保证了选举数量同时对候选节点排序从而保证选举的一致性。

发现和加入集群是zenDiscovery的主要功能,当然它还有一些其它功能,如处理节点离开(handleLeaveRequest),处理master发送的最小clustersates(handleNewClusterStateFromMaster)等功能。这里就不一一介绍,有兴趣请参考相关源码。

总结

本节结合zenDiscovery,分析了master选举的另外一部分内容。同时zenDiscovery是节点发现集群功能的集合,它主要功能是发现(选举)出集群的master节点,并试图加入集群。同时如果 本机是master还会处理节点的离开和节点丢失,如果不是master则会处理来自master的节点状态更新。

以上就是elasticsearch的zenDiscovery和master选举机制原理分析的详细内容,更多关于elasticsearch的zenDiscovery和master选举机制的资料请关注我们其它相关文章!


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:SpringBoot 项目中创建线程池
下一篇:如何在Java中实现一个散列表(java中的应用)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~