pyecharts案例 超市4年数据可视化大屏(二)

网友投稿 395 2022-08-22


pyecharts案例 超市4年数据可视化大屏(二)

效果预览

一、数据描述

数据集中9994条数据,横跨1237天,销售额为2,297,200.8603美元,利润为286,397.0217美元,他们的库存中有1862件独特的物品,它们被分为3类,所有这些物品都在美国4个地区的49个州销售,来着793位客户的5009个订单。

数据集: Superstore.csv 来源:kaggle

一共21列数据,每一列属性描述如下:

Row ID => 每一行唯一的ID.

Order ID => 每个客户的唯一订单ID.

Order Date => 产品的订单日期.

Ship Date => 产品发货日期.

Ship Mode=> 客户指定的发货模式.

Customer ID => 标识每个客户的唯一ID.

Customer Name => 客户的名称.

Segment => The segment where the Customer belongs.

Country => 客户居住的国家.

City => 客户居住的城市.

State => 客户所在的州.

Postal Code => 每个客户的邮政编码.

Region => “客户”所属地区.

Product ID => 产品的唯一ID.

Category => 所订购产品的类别.

Sub-Category => 所订购产品的子类别.

Product Name => 产品名称

Sales =>产品的销售.

Quantity => 产品数量.

Discount => 提供折扣.

Profit => 已发生的利润/亏损.

1、数据概览

9994行,21列数据

print(df.info())

RangeIndex: 9994 entries, 0 to 9993Data columns (total 21 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Row ID 9994 non-null int64 1 Order ID 9994 non-null object 2 Order Date 9994 non-null object 3 Ship Date 9994 non-null object 4 Ship Mode 9994 non-null object 5 Customer ID 9994 non-null object 6 Customer Name 9994 non-null object 7 Segment 9994 non-null object 8 Country 9994 non-null object 9 City 9994 non-null object 10 State 9994 non-null object 11 Postal Code 9994 non-null int64 12 Region 9994 non-null object 13 Product ID 9994 non-null object 14 Category 9994 non-null object 15 Sub-Category 9994 non-null object 16 Product Name 9994 non-null object 17 Sales 9994 non-null float64 18 Quantity 9994 non-null int64 19 Discount 9994 non-null float64 20 Profit 9994 non-null float64dtypes: float64(3), int64(3), object(15)memory usage: 1.6+ MBNone

二、数据预处理

0、导入包和数据

import pandas as pdfrom pyecharts.charts import *from pyecharts import options as optsfrom pyecharts.commons.utils import JsCodedata = pd.read_csv(r'./data/Superstore.csv')

1、列名重命名

重命名后的列名:

data.columns = ['行ID', '订单ID', '订单日期', '发货日期', '发货方式', '客户ID', '客户名称', '客户类型', '国家', '城市', '州', '邮政编码', '所属区域', '产品ID', '产品类别', '产品子类别', '产品名称', '销售额', '产品数量', '提供折扣', '利润/亏损']

2、提取数据中时间,方便后续分析绘图

data['年份'] = data['订单日期'].apply(lambda x: x[-4:])data['日期'] = pd.to_datetime(data['订单日期'], format='%m/%d/%Y')data['月份'] = data['日期'].dt.monthdata['年-月'] = data['年份'].astype('str') + '-' + data['月份'].astype('str')

三、数据可视化大屏汇总


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Google Kaptcha验证码生成的使用实例说明
下一篇:pyecharts案例 超市4年数据可视化分析(一)(pyecharts实例)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~