react-smooth-dnd 拖拽实例(react-smooth-dnd 列表排序)
952
2022-08-23
FastAPI官方教程太棒了(上)(fastapi中文网)
Python第三流行的Web框架
在2020年的Python开发者调查结果中,有这样一段话:“FastAPI在此次调查迭代中首次被引为选项,表现为Python第三流行的Web框架。”
FastAPI创立于2018年12月,不到2年就成为仅次于Flask和Django的第三流行的Web框架。而又经过了一年发展来到2022年,虽然2021年Python开发者调查结果还没有出来,但是从GitHub的star来看,Flask 58.7k,Django 63.6k,FastAPI 44.2k,这个差距缩得越来越小。
FastAPI特性
这里就不做机器翻译了,大家看下原文:
我说下我选择FastAPI的理由:首先就是HttpRunner集成了FastAPI,有大佬背书,相信这个框架足以优秀。其次是注解,用多了SpringBoot以后,越来越喜欢注解,层次清晰。对于前后端分离项目来说,Flask虽然非常精简却又自带了Jinja模板引擎,Django虽然是百宝箱却又显得太重,而FastAPI介于两者之间,就是一个纯粹的后端应用。并且FastAPI是基于Starlette框架的,集成了实用功能比如类型检查、OpenAPI(Swagger)等等,这跟我基于pytest框架做tep测试工具的理念很相似。
安装
对Python版本要求是3.6+。
先安装FastAPI:
pip install fastapi
再安装ASGI服务器,比如Uvicorn:
pip install "uvicorn[standard]"
也可以同时安装fastapi和uvicorn:
pip install "fastapi[all]"
运行
写个main.py文件:
from typing import Optionalfrom fastapi import FastAPIapp = FastAPI()@app.get("/")def read_root(): return {"Hello": "World"}@app.get("/items/{item_id}")def read_item(item_id: int, q: Optional[str] = None): return {"item_id": item_id, "q": q}
在命令行输入启动应用:
uvicorn main:app --reload
main是Python模块名。
app是app = FastAPI()。
--reload在代码变化时自动重启服务器。
打开浏览器访问:
5, "q": "somequery"}
访问:
typing import Optionalfrom fastapi import FastAPIfrom pydantic import BaseModelapp = FastAPI()class Item(BaseModel): name: str price: float is_offer: Optional[bool] = None@app.get("/")def read_root(): return {"Hello": "World"}@app.get("/items/{item_id}")def read_item(item_id: int, q: Optional[str] = None): return {"item_id": item_id, "q": q}@app.put("/items/{item_id}")def update_item(item_id: int, item: Item): return {"item_name": item.name, "item_id": item_id}
Item是个入参模型,它的name必须str类型,price必须float类型,is_offer是可选的,可以为bool类型或不传。
PUT "name": "dongfanger", "price": 2.3, "is_offer": true}{ "item_name": "dongfanger", "item_id": 6}
路径参数
把路径参数传递给函数:
from fastapi import FastAPIapp = FastAPI()@app.get("/items/{item_id}")async def read_item(item_id): return {"item_id": item_id}
也可以指定Python类型:
from fastapi import FastAPIapp = FastAPI()@app.get("/items/{item_id}")async def read_item(item_id: int): return {"item_id": item_id}
效果是访问 会返回{"item_id":"foo"}。
指定了Python类型后,FastAPI会强制检查,比如传str会报错:
"detail": [ { "loc": [ "path", "item_id" ], "msg": "value is not a valid integer", "type": "type_error.integer" } ]}
传float也会报错:
"the current user"}:
from fastapi import FastAPIapp = FastAPI()@app.get("/users/me")async def read_user_me(): return {"user_id": "the current user"}@app.get("/users/{user_id}")async def read_user(user_id: str): return {"user_id": user_id}
假如这2个path定义顺序反过来,那么/users/me就会匹配到/users/{user_id}而返回{"user_id": me}了。
枚举路径
借助于Enun类,可以实现枚举路径:
from enum import Enumfrom fastapi import FastAPIclass ModelName(str, Enum): alexnet = "alexnet" resnet = "resnet" lenet = "lenet"app = FastAPI()@app.get("/models/{model_name}")async def get_model(model_name: ModelName): if model_name == ModelName.alexnet: return {"model_name": model_name, "message": "Deep Learning FTW!"} if model_name.value == "lenet": return {"model_name": model_name, "message": "LeCNN all the images"} return {"model_name": model_name, "message": "Have some residuals"}
效果:
path匹配
FastAPI提供了一个path类型,可以用来对文件路径进行格式匹配:
from fastapi import FastAPIapp = FastAPI()@app.get("/files/{file_path:path}")async def read_file(file_path: str): return {"file_path": file_path}
查询参数
查询参数是跟在路径参数后面,用?分隔用&连接的参数,比如fastapi import FastAPIapp = FastAPI()fake_items_db = [{"item_name": "Foo"}, {"item_name": "Bar"}, {"item_name": "Baz"}]@app.get("/items/")async def read_item(skip: int = 0, limit: int = 10): return fake_items_db[skip : skip + limit]
参数是可选的并且设置了默认值:limit: int = 10
参数是可选的,无默认值:limit: Optional[int] = None
注意:是否可选是由None来决定的,而Optional只是为编译器提供支持,跟FastAPI没有关系。
参数是必填的:limit: int
请求体
FastAPI的请求体借助于pydantic来实现:
from typing import Optionalfrom fastapi import FastAPIfrom pydantic import BaseModelclass Item(BaseModel): name: str description: Optional[str] = None price: float tax: Optional[float] = Noneapp = FastAPI()@app.post("/items/")async def create_item(item: Item): return item
继承于BaseModel来自定义Model,FastAPI会自动转换为JSON。
Pydantic PyCharm Plugin插件提高编码体验:auto-completiontype checksrefactoringsearchinginspections
路径参数+查询参数+请求体
总结一下,在函数参数中,url path中定义的叫做路径参数,没有定义的叫做查询参数,类型是pydantic model的叫做请求体,FastAPI会根据这套规则来自动识别:
from typing import Optionalfrom fastapi import FastAPIfrom pydantic import BaseModelclass Item(BaseModel): name: str description: Optional[str] = None price: float tax: Optional[float] = Noneapp = FastAPI()@app.put("/items/{item_id}")async def create_item(item_id: int, item: Item, q: Optional[str] = None): result = {"item_id": item_id, **item.dict()} if q: result.update({"q": q}) return result
查询参数字符串校验
FastAPI提供了Query来支持对入参的字符串校验,比如最小长度和最大长度:
from typing import Optionalfrom fastapi import FastAPI, Queryapp = FastAPI()@app.get("/items/")async def read_items( q: Optional[str] = Query(None, min_length=3, max_length=50, regex="^fixedquery$")): results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]} if q: results.update({"q": q}) return results
甚至其中也能包含正则表达式:regex="^fixedquery$"。
用Query时指定默认值:
from fastapi import FastAPI, Queryapp = FastAPI()@app.get("/items/")async def read_items(q: str = Query("fixedquery", min_length=3)): results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]} if q: results.update({"q": q}) return results
用Query时必填:
from fastapi import FastAPI, Queryapp = FastAPI()@app.get("/items/")async def read_items(q: str = Query(..., min_length=3)): results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]} if q: results.update({"q": q}) return results
查询参数传list
from typing import List, Optionalfrom fastapi import FastAPI, Queryapp = FastAPI()@app.get("/items/")async def read_items(q: Optional[List[str]] = Query(None)): query_items = {"q": q} return query_items
指定默认值:
from typing import Listfrom fastapi import FastAPI, Queryapp = FastAPI()@app.get("/items/")async def read_items(q: List[str] = Query(["foo", "bar"])): query_items = {"q": q} return query_items
url就像这样:typing import Optionalfrom fastapi import FastAPI, Queryapp = FastAPI()@app.get("/items/")async def read_items(q: Optional[str] = Query(None, alias="item-query")): results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]} if q: results.update({"q": q}) return results
路径参数数字校验
查询参数用Query做字符串(String)校验,路径参数用Path做数字(Numeric)校验:
from fastapi import FastAPI, Pathapp = FastAPI()@app.get("/items/{item_id}")async def read_items( *, item_id: int = Path(..., title="The ID of the item to get", gt=0, le=1000), q: str,): results = {"item_id": item_id} if q: results.update({"q": q}) return results
路径参数永远都是必填的,因为它是url一部分。...表示必填,就算设置为None也没有用,仍然是必填。
ge表示大于等于,greater equal。
le表示小于等于,less equal。
gt表示大于,greater than。
lt表示小于,less than。
请求体-多参数
一、如果请求体嵌套了多个JSON:
{ "item": { "name": "Foo", "description": "The pretender", "price": 42.0, "tax": 3.2 }, "user": { "username": "dave", "full_name": "Dave Grohl" }}
那么就需要在FastAPI中定义多参数:
from typing import Optionalfrom fastapi import FastAPIfrom pydantic import BaseModelapp = FastAPI()class Item(BaseModel): name: str description: Optional[str] = None price: float tax: Optional[float] = Noneclass User(BaseModel): username: str full_name: Optional[str] = None@app.put("/items/{item_id}")async def update_item(item_id: int, item: Item, user: User): results = {"item_id": item_id, "item": item, "user": user} return results
这里定义了2个Model:Item和User。
二、而如果多个参数中有个参数只是单个值,比如这里的importance:
{ "item": { "name": "Foo", "description": "The pretender", "price": 42.0, "tax": 3.2 }, "user": { "username": "dave", "full_name": "Dave Grohl" }, "importance": 5}
那么定义成变量并赋值= Body()即可:
@app.put("/items/{item_id}")async def update_item(item_id: int, item: Item, user: User, importance: int = Body()): results = {"item_id": item_id, "item": item, "user": user, "importance": importance} return results
三、在只有一个Item的时候,FastAPI默认会接收这样的body:
{ "name": "Foo", "description": "The pretender", "price": 42.0, "tax": 3.2}
假如想把item也放到JSON中:
{ "item": { "name": "Foo", "description": "The pretender", "price": 42.0, "tax": 3.2 }}
那么可以使用Body(embed=True)):
from typing import Unionfrom fastapi import Body, FastAPIfrom pydantic import BaseModelapp = FastAPI()class Item(BaseModel): name: str description: Union[str, None] = None price: float tax: Union[float, None] = None@app.put("/items/{item_id}")async def update_item(item_id: int, item: Item = Body(embed=True)): results = {"item_id": item_id, "item": item} return results
请求体-字段
Pydantic提供了Field来给body中的字段添加额外校验:
from typing import Unionfrom fastapi import Body, FastAPIfrom pydantic import BaseModel, Fieldapp = FastAPI()class Item(BaseModel): name: str description: Union[str, None] = Field( default=None, title="The description of the item", max_length=300 ) price: float = Field(gt=0, description="The price must be greater than zero") tax: Union[float, None] = None@app.put("/items/{item_id}")async def update_item(item_id: int, item: Item = Body(embed=True)): results = {"item_id": item_id, "item": item} return results
跟FastAPI提供的Query、Path、Body作用类似。
请求体-嵌套模型
传List:
from typing import List, Unionfrom fastapi import FastAPIfrom pydantic import BaseModelapp = FastAPI()class Item(BaseModel): name: str description: Union[str, None] = None price: float tax: Union[float, None] = None tags: List[str] = []@app.put("/items/{item_id}")async def update_item(item_id: int, item: Item): results = {"item_id": item_id, "item": item} return results
传Set,自动去重:
from typing import Set, Unionfrom fastapi import FastAPIfrom pydantic import BaseModelapp = FastAPI()class Item(BaseModel): name: str description: Union[str, None] = None price: float tax: Union[float, None] = None tags: Set[str] = set()@app.put("/items/{item_id}")async def update_item(item_id: int, item: Item): results = {"item_id": item_id, "item": item} return results
传Model:
from typing import Set, Unionfrom fastapi import FastAPIfrom pydantic import BaseModelapp = FastAPI()class Image(BaseModel): url: str name: strclass Item(BaseModel): name: str description: Union[str, None] = None price: float tax: Union[float, None] = None tags: Set[str] = set() image: Union[Image, None] = None@app.put("/items/{item_id}")async def update_item(item_id: int, item: Item): results = {"item_id": item_id, "item": item} return results
入参会像这样:
{ "name": "Foo", "description": "The pretender", "price": 42.0, "tax": 3.2, "tags": ["rock", "metal", "bar"], "image": { "url": " "name": "The Foo live" }}
对于url,pydantic提供了HttpUrl来做校验:class Image(BaseModel): url: HttpUrl name: str
传Model的List:
from typing import List, Set, Unionfrom fastapi import FastAPIfrom pydantic import BaseModel, HttpUrlapp = FastAPI()class Image(BaseModel): url: HttpUrl name: strclass Item(BaseModel): name: str description: Union[str, None] = None price: float tax: Union[float, None] = None tags: Set[str] = set() images: Union[List[Image], None] = None@app.put("/items/{item_id}")async def update_item(item_id: int, item: Item): results = {"item_id": item_id, "item": item} return results
入参像这样:
{ "name": "Foo", "description": "The pretender", "price": 42.0, "tax": 3.2, "tags": [ "rock", "metal", "bar" ], "images": [ { "url": " "name": "The Foo live" }, { "url": " "name": "The Baz" } ]}
添加示例请求
通过Config和schema_extra添加示例请求:
from typing import Unionfrom fastapi import FastAPIfrom pydantic import BaseModelapp = FastAPI()class Item(BaseModel): name: str description: Union[str, None] = None price: float tax: Union[float, None] = None class Config: schema_extra = { "example": { "name": "Foo", "description": "A very nice Item", "price": 35.4, "tax": 3.2, } }@app.put("/items/{item_id}")async def update_item(item_id: int, item: Item): results = {"item_id": item_id, "item": item} return results
在使用以下任一时,都可以添加example:
Path()Query()Header()Cookie()Body()Form()File()
比如:
from typing import Unionfrom fastapi import FastAPIfrom pydantic import BaseModel, Fieldapp = FastAPI()class Item(BaseModel): name: str = Field(example="Foo") description: Union[str, None] = Field(default=None, example="A very nice Item") price: float = Field(example=35.4) tax: Union[float, None] = Field(default=None, example=3.2)@app.put("/items/{item_id}")async def update_item(item_id: int, item: Item): results = {"item_id": item_id, "item": item} return results
from typing import Unionfrom fastapi import Body, FastAPIfrom pydantic import BaseModelapp = FastAPI()class Item(BaseModel): name: str description: Union[str, None] = None price: float tax: Union[float, None] = None@app.put("/items/{item_id}")async def update_item( item_id: int, item: Item = Body( example={ "name": "Foo", "description": "A very nice Item", "price": 35.4, "tax": 3.2, }, ),): results = {"item_id": item_id, "item": item} return results
from typing import Unionfrom fastapi import Body, FastAPIfrom pydantic import BaseModelapp = FastAPI()class Item(BaseModel): name: str description: Union[str, None] = None price: float tax: Union[float, None] = None@app.put("/items/{item_id}")async def update_item( *, item_id: int, item: Item = Body( examples={ "normal": { "summary": "A normal example", "description": "A **normal** item works correctly.", "value": { "name": "Foo", "description": "A very nice Item", "price": 35.4, "tax": 3.2, }, }, "converted": { "summary": "An example with converted data", "description": "FastAPI can convert price `strings` to actual `numbers` automatically", "value": { "name": "Bar", "price": "35.4", }, }, "invalid": { "summary": "Invalid data is rejected with an error", "value": { "name": "Baz", "price": "thirty five point four", }, }, }, ),): results = {"item_id": item_id, "item": item} return results
额外数据类型
FastAPI除了支持常见的数据类型:
intfloatstrbool
还支持额外的数据类型:
UUIDdatetime.datetimedatetime.datedatetime.timedatetime.timedeltafrozensetbytesDecimal
示例:
from datetime import datetime, time, timedeltafrom typing import Unionfrom uuid import UUIDfrom fastapi import Body, FastAPIapp = FastAPI()@app.put("/items/{item_id}")async def read_items( item_id: UUID, start_datetime: Union[datetime, None] = Body(default=None), end_datetime: Union[datetime, None] = Body(default=None), repeat_at: Union[time, None] = Body(default=None), process_after: Union[timedelta, None] = Body(default=None),): start_process = start_datetime + process_after duration = end_datetime - start_process return { "item_id": item_id, "start_datetime": start_datetime, "end_datetime": end_datetime, "repeat_at": repeat_at, "process_after": process_after, "start_process": start_process, "duration": duration, }
Cookie
from typing import Unionfrom fastapi import Cookie, FastAPIapp = FastAPI()@app.get("/items/")async def read_items(ads_id: Union[str, None] = Cookie(default=None)): return {"ads_id": ads_id}
跟Query和 Path用法类似。
Header
from typing import Unionfrom fastapi import FastAPI, Headerapp = FastAPI()@app.get("/items/")async def read_items(user_agent: Union[str, None] = Header(default=None)): return {"User-Agent": user_agent}
多重header用List,比如:
from typing import Unionfrom fastapi import FastAPI, Headerapp = FastAPI()@app.get("/items/")async def read_items(user_agent: Union[str, None] = Header(default=None)): return {"User-Agent": user_agent}
X-Token: fooX-Token: bar
{ "X-Token values": [ "bar", "foo" ]}
响应模型
通过response_model定义返回模型:
from typing import List, Unionfrom fastapi import FastAPIfrom pydantic import BaseModelapp = FastAPI()class Item(BaseModel): name: str description: Union[str, None] = None price: float tax: Union[float, None] = None tags: List[str] = []@app.post("/items/", response_model=Item)async def create_item(item: Item): return item
response_model的作用是对函数返回值进行过滤,比如:
from typing import Unionfrom fastapi import FastAPIfrom pydantic import BaseModel, EmailStrapp = FastAPI()class UserIn(BaseModel): username: str password: str email: EmailStr full_name: Union[str, None] = Noneclass UserOut(BaseModel): username: str email: EmailStr full_name: Union[str, None] = None@app.post("/user/", response_model=UserOut)async def create_user(user: UserIn): return user
函数返回值是UserIn模型的对象user,而response_model的值为UserOut(UserOut相比于UserIn来说,没有password),那么FastAPI的响应,就是用UserOut对UserIn进行了过滤,返回的是没有password的UserOut。
响应模型可以返回默认值:
from typing import List, Unionfrom fastapi import FastAPIfrom pydantic import BaseModelapp = FastAPI()class Item(BaseModel): name: str description: Union[str, None] = None price: float tax: float = 10.5 tags: List[str] = []items = { "foo": {"name": "Foo", "price": 50.2}, "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2}, "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},}@app.get("/items/{item_id}", response_model=Item, response_model_exclude_unset=True)async def read_item(item_id: str): return items[item_id]
response_model_exclude_unset=True不返回未显式设置的字段,response_model_exclude_defaults不返回带默认值的字段,response_model_exclude_none不返回None的字段。
附加模型
在上面的示例中,UserIn是入参,UserOut是出参,不包含password,但是在实际情况中,还需要第三个模型UserInDB,在存入数据库时,把password进行加密。
代码实现如下:
from typing import Unionfrom fastapi import FastAPIfrom pydantic import BaseModel, EmailStrapp = FastAPI()class UserIn(BaseModel): username: str password: str email: EmailStr full_name: Union[str, None] = Noneclass UserOut(BaseModel): username: str email: EmailStr full_name: Union[str, None] = Noneclass UserInDB(BaseModel): username: str hashed_password: str email: EmailStr full_name: Union[str, None] = Nonedef fake_password_hasher(raw_password: str): return "supersecret" + raw_passworddef fake_save_user(user_in: UserIn): hashed_password = fake_password_hasher(user_in.password) user_in_db = UserInDB(**user_in.dict(), hashed_password=hashed_password) print("User saved! ..not really") return user_in_db@app.post("/user/", response_model=UserOut)async def create_user(user_in: UserIn): user_saved = fake_save_user(user_in) return user_saved
重点是user_in_db = UserInDB(**user_in.dict(), hashed_password=hashed_password)里面的**user_in.dict()。
user_in是UserIn类的Pydantic模型,它有个dict()方法能返回字典。**是拆包,把字典拆成key value的形式,上面这行代码等价于:
UserInDB( username="john", password="secret", email="john.doe@example.com", full_name=None, hashed_password=hashed_password)
也相当于:
UserInDB( username = user_dict["username"], password = user_dict["password"], email = user_dict["email"], full_name = user_dict["full_name"], hashed_password = hashed_password,)
FastAPI的一大设计原则是尽量减少重复代码,所以对于UserIn、UserOut、UserInDB可以把里面的相同字段抽象为一个UserBase,其他Model继承即可:
from typing import Unionfrom fastapi import FastAPIfrom pydantic import BaseModel, EmailStrapp = FastAPI()class UserBase(BaseModel): username: str email: EmailStr full_name: Union[str, None] = Noneclass UserIn(UserBase): password: strclass UserOut(UserBase): passclass UserInDB(UserBase): hashed_password: strdef fake_password_hasher(raw_password: str): return "supersecret" + raw_passworddef fake_save_user(user_in: UserIn): hashed_password = fake_password_hasher(user_in.password) user_in_db = UserInDB(**user_in.dict(), hashed_password=hashed_password) print("User saved! ..not really") return user_in_db@app.post("/user/", response_model=UserOut)async def create_user(user_in: UserIn): user_saved = fake_save_user(user_in) return user_saved
response_model除了定义一个Model以外,也能定义多个附加模型。
比如Union:
from typing import Unionfrom fastapi import FastAPIfrom pydantic import BaseModelapp = FastAPI()class BaseItem(BaseModel): description: str type: strclass CarItem(BaseItem): type = "car"class PlaneItem(BaseItem): type = "plane" size: intitems = { "item1": {"description": "All my friends drive a low rider", "type": "car"}, "item2": { "description": "Music is my aeroplane, it's my aeroplane", "type": "plane", "size": 5, },}@app.get("/items/{item_id}", response_model=Union[PlaneItem, CarItem])async def read_item(item_id: str): return items[item_id]
比如List:
from typing import Listfrom fastapi import FastAPIfrom pydantic import BaseModelapp = FastAPI()class Item(BaseModel): name: str description: stritems = [ {"name": "Foo", "description": "There comes my hero"}, {"name": "Red", "description": "It's my aeroplane"},]@app.get("/items/", response_model=List[Item])async def read_items(): return items
比如Dict:
from typing import Dictfrom fastapi import FastAPIapp = FastAPI()@app.get("/keyword-weights/", response_model=Dict[str, float])async def read_keyword_weights(): return {"foo": 2.3, "bar": 3.4}
参考资料:https://fastapi.tiangolo.com/
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~