java中的接口是类吗
425
2022-06-06
线程池有两个核心的概念,一个是任务队列,一个是工作线程队列。任务队列负责存放主线程需要处理的任务,工作线程队列其实是一个死循环,负责从任务队列中取出和运行任务,可以看成是一个生产者和多个消费l者的模型。在一些高并发的网络应用中,线程池也是常用的技术。陈硕大神推荐的C++多线程服务端编程模式为:one loop per thread + thread pool,通常会有单独的线程负责接受来自客户端的请求,对请求稍作解析后将数据处理的任务提交到专门的计算线程池。
ThreadPool 线程池同步事件: 线程池内的线程函数同样支持互斥锁
,信号控制
,内核事件控制
,临界区控制
.
#include <Windows.h> #include <iostream> #include <stdlib.h> unsigned long g_count = 0; // -------------------------------------------------------------- // 线程池同步-互斥量同步 void NTAPI TaskHandlerMutex(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work) { // 锁定资源 WaitForSingleObject(*(HANDLE *)Context, INFINITE); for (int x = 0; x < 100; x++) { printf("线程ID: %d ---> 子线程: %d \n", GetCurrentThreadId(), x); g_count = g_count + 1; } // 解锁资源 ReleaseMutexWhenCallbackReturns(Instance, *(HANDLE*)Context); } void TestMutex() { // 创建互斥量 HANDLE hMutex = CreateMutex(NULL, FALSE, NULL); PTP_WORK pool = CreateThreadpoolWork((PTP_WORK_CALLBACK)TaskHandlerMutex, &hMutex, NULL); for (int i = 0; i < 1000; i++) { SubmitThreadpoolWork(pool); } WaitForThreadpoolWorkCallbacks(pool, FALSE); CloseThreadpoolWork(pool); CloseHandle(hMutex); printf("相加后 ---> %d \n", g_count); } // -------------------------------------------------------------- // 线程池同步-事件内核对象 void NTAPI TaskHandlerKern(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work) { // 锁定资源 WaitForSingleObject(*(HANDLE *)Context, INFINITE); for (int x = 0; x < 100; x++) { printf("线程ID: %d ---> 子线程: %d \n", GetCurrentThreadId(), x); g_count = g_count + 1; } // 解锁资源 SetEventWhenCallbackReturns(Instance, *(HANDLE*)Context); } void TestKern() { HANDLE hEvent = CreateEvent(NULL, FALSE, FALSE, NULL); SetEvent(hEvent); PTP_WORK pwk = CreateThreadpoolWork((PTP_WORK_CALLBACK)TaskHandlerKern, &hEvent, NULL); for (int i = 0; i < 1000; i++) { SubmitThreadpoolWork(pwk); } WaitForThreadpoolWorkCallbacks(pwk, FALSE); CloseThreadpoolWork(pwk); printf("相加后 ---> %d \n", g_count); } // -------------------------------------------------------------- // 线程池同步-信号量同步 void NTAPI TaskHandlerSemaphore(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work) { // 锁定资源 WaitForSingleObject(*(HANDLE *)Context, INFINITE); for (int x = 0; x < 100; x++) { printf("线程ID: %d ---> 子线程: %d \n", GetCurrentThreadId(), x); g_count = g_count + 1; } // 解锁资源 ReleaseSemaphoreWhenCallbackReturns(Instance, *(HANDLE*)Context, 1); } void TestSemaphore() { // 创建信号量为100 HANDLE hSemaphore = CreateSemaphore(NULL, 0, 100, NULL); ReleaseSemaphore(hSemaphore, 10, NULL); PTP_WORK pwk = CreateThreadpoolWork((PTP_WORK_CALLBACK)TaskHandlerSemaphore, &hSemaphore, NULL); for (int i = 0; i < 1000; i++) { SubmitThreadpoolWork(pwk); } WaitForThreadpoolWorkCallbacks(pwk, FALSE); CloseThreadpoolWork(pwk); CloseHandle(hSemaphore); printf("相加后 ---> %d \n", g_count); } // -------------------------------------------------------------- // 线程池同步-临界区 void NTAPI TaskHandlerLeave(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work) { // 锁定资源 EnterCriticalSection((CRITICAL_SECTION*)Context); for (int x = 0; x < 100; x++) { printf("线程ID: %d ---> 子线程: %d \n", GetCurrentThreadId(), x); g_count = g_count + 1; } // 解锁资源 LeaveCriticalSectionWhenCallbackReturns(Instance, (CRITICAL_SECTION*)Context); } void TestLeave() { CRITICAL_SECTION cs; InitializeCriticalSection(&cs); PTP_WORK pwk = CreateThreadpoolWork((PTP_WORK_CALLBACK)TaskHandlerLeave, &cs, NULL); for (int i = 0; i < 1000; i++) { SubmitThreadpoolWork(pwk); } WaitForThreadpoolWorkCallbacks(pwk, FALSE); DeleteCriticalSection(&cs); CloseThreadpoolWork(pwk); printf("相加后 ---> %d \n", g_count); } int main(int argc,char *argv) { //TestMutex(); //TestKern(); //TestSemaphore(); TestLeave(); system("pause"); return 0; }
简单的IO读写:
#include <Windows.h> #include <iostream> #include <stdlib.h> // 简单的异步文本读写 int ReadWriteIO() { char enContent[] = "hello lyshark"; char deContent[255] = { 0 }; // 异步写文件 HANDLE hFileWrite = CreateFile(L"d://test.txt", GENERIC_WRITE, 0, NULL, OPEN_ALWAYS, FILE_FLAG_SEQUENTIAL_SCAN, NULL); if (INVALID_HANDLE_VALUE == hFileWrite) { return 0; } WriteFile(hFileWrite, enContent, strlen(enContent), NULL, NULL); FlushFileBuffers(hFileWrite); CancelSynchronousIo(hFileWrite); CloseHandle(hFileWrite); // 异步读文件 HANDLE hFileRead = CreateFile(L"d://test.txt", GENERIC_READ, 0, NULL, OPEN_ALWAYS, NULL, NULL); if (INVALID_HANDLE_VALUE == hFileRead) { return 0; } ReadFile(hFileRead, deContent, 255, NULL, NULL); CloseHandle(hFileRead); std::cout << "读出内容: " << deContent << std::endl; return 1; } // 通过IO获取文件大小 int GetFileSize() { HANDLE hFile = CreateFile(L"d://test.txt", 0, 0, NULL, OPEN_EXISTING, NULL, NULL); if (INVALID_HANDLE_VALUE == hFile) { return 0; } ULARGE_INTEGER ulFileSize; ulFileSize.LowPart = GetFileSize(hFile, &ulFileSize.HighPart); LARGE_INTEGER lFileSize; BOOL ret = GetFileSizeEx(hFile, &lFileSize); std::cout << "文件大小A: " << ulFileSize.QuadPart << " bytes" << std::endl; std::cout << "文件大小B: " << lFileSize.QuadPart << " bytes" << std::endl; CloseHandle(hFile); return 1; } // 通过IO设置文件指针和文件尾 int SetFilePointer() { char deContent[255] = { 0 }; DWORD readCount = 0; HANDLE hFile = CreateFile(L"d://test.txt", GENERIC_WRITE, 0, NULL, OPEN_ALWAYS, NULL, NULL); if (INVALID_HANDLE_VALUE == hFile) { return 0; } LARGE_INTEGER liMove; // 设置移动位置 liMove.QuadPart = 2; SetFilePointerEx(hFile, liMove, NULL, FILE_BEGIN); // 移动到文件末尾 SetEndOfFile(hFile); ReadFile(hFile, deContent, 255, &readCount, NULL); std::cout << "移动指针后读取: " << deContent << " 读入长度: " << readCount << std::endl; CloseHandle(hFile); // 设置编码格式 _wsetlocale(LC_ALL, L"chs"); setlocale(LC_ALL, "chs"); wprintf(L"%s", deContent); } int main(int argc,char *argv) { // 读写IO ReadWriteIO(); // 取文件长度 GetFileSize(); // 设置文件指针 SetFilePointer(); return 0; }
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~