Java自定义线程池的实现示例

网友投稿 458 2022-08-26


Java自定义线程池的实现示例

目录一、java语言本身也是多线程,回顾Java创建线程方式如下:二、JDK线程池工具类.三、业界知名自定义线程池扩展使用.

一、Java语言本身也是多线程,回顾Java创建线程方式如下:

1、继承Thread类,(Thread类实现Runnable接口),来个类图加深印象。

2、实现Runnable接口实现无返回值、实现run()方法,啥时候run,黑话了。

3、实现Callable接口重写call()+FutureTask获取.

public class CustomThread {

public static void main(String[] args) {

// 自定义线程

new Thread(new Runnable() {

@Override

public void run() {

System.out.println("Custom Run");

System.out.println(Thread.currentThread().getName());

}

},"custom-thread-1").start();

}

}

4、基于线程池集中管理创建线程系列周期.【本篇文章重点介绍】

二、JDK线程池工具类.

1、Executors工具类,是JDK中Doug Lea大佬实现供开发者使用。

随着JDK版本迭代逐渐加入了基于工作窃取算法的线程池了,阿里编码规范也推荐开发者自定义线程池,禁止生产直接使用Executos线程池工具类,因此很有可能造成OOM异常。同时在某些类型的线程池里面,使用无界队列还会导致maxinumPoolSize、keepAliveTime、handler等参数失效。因此目前在大厂的开发规范中会强调禁止使用Executors来创建线程池。这里说道阻塞队列。LinkedBlockingQueue。

2、自定义线程池工具类基于ThreadPoolExecutor实现,那个JDK封装的线程池工具类也是基于这个ThreadPoolExecutor实现的。

public class ConstomThreadPool extends ThreadPoolExecutor{

/**

*

* @param corePoolSize 核心线程池

* @param maximumPoolSize 线程池最大数量

* @param keepAliveTime 线程存活时间

* @param unit TimeUnit

* @param workQueue 工作队列,自定义大小

* @param poolName 线程工厂自定义线程名称

*/

public ConstomThreadPool(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue, String poolName) {

super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);

setThreadFactory(new CustomThreadFactory(poolName, false));

}

}

自定义线程工厂类,这样线程命名有开发者控制实现了,这样参数可以做到可配置化,生产环境可以供不同业务模块使用,如果系统配置值不生效,就给一个默认值,更加满足业务需要.

/**

* 自定义线程工厂

*/

public class CustomThreadFactory implements ThreadFactory {

/**

* 线程前缀,采用AtomicInteger实现线程编号线程安全自增

*/

private final AtomicInteger atomicInteger = new AtomicInteger(1);

/**

* 线程命名前缀

*/

private final String namePrefix;

/**

* 线程工厂创建的线程是否是守护线程

*/

private final boolean isDaemon;

public CustomThreadFactory(String prefix, boolean daemin) {

if (StringUtils.isNoneBlank(prefix)) {

this.namePrefix = prefix;

} else {

this.namePrefix = "thread_pool";

}

// 是否是守护线程

isDaemon = daemin;

}

@Override

public Thread newThread(Runnable r) {

Thread thread = new Thread(r, namePrefix + "-" + atomicInteger.getAndIncrement());

thread.setDaemon(isDaemon);

// 设置线程优先级

if (thread.getPriority() != Thread.NORM_PRIORITY) {

thread.setPriority(Thread.NORM_PRIORITY);

}

return thread;

}

}

这里Spring框架提供的自定义线程池工厂类,当然了一些开源包也会提供这样的轮子,这个比较简单了.

@SuppressWarnings("serial")

public class CustomizableThreadFactory extends CustomizableThreadCreator implements ThreadFactory {

/**

* Create a new CustomizableThreadFactory with default thread name prefix.

*/

public CustomizableThreadFactory() {

super();

}

/**

* Create a new CustomizableThreadFactory with the given thread name prefix.

* @param threadNamePrefix the prefix to use for the names of newly created threads

*/

public CustomizableThreadFactory(String threadNamePrefix) {

super(threadNamePrefix);

}

@Override

public Thread newThread(Runnable runnable) {

return createThread(runnable);

}

}

3、SpringBoot框架提供的自定义线程池,基于异步注解@Async名称和一些业务自定义配置项,很好的实现了业务间线程池的隔离。

@Configuration

public class ThreadPoolConfig {

/**

*

* @return ThreadPoolTaskExecutor

*/

@Bean("serviceTaskA")

public ThreadPoolTaskExecutor serviceTaskA() {

ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();

executor.setCorePoolSize(2);

executor.setMaxPoolSize(2);

executor.setQueueCapacity(10);

executor.setKeepAliveSeconds(60);

executor.setThreadNamePrefix("service-a");

executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());

return executor;

}

/**

*

* @return ThreadPoolTaskExecutor

*/

@Bean("serviceTaskB")

public ThreadPoolTaskExecutor serviceTaskB() {

ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();

executor.setCorePoolSize(2);

executor.setMaxPoolSize(2);

executor.setQueueCapacity(10);

executor.setKeepAliveSeconds(60);

executor.setThreadNamePrefix("service-b");

executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());

return executor;

}

}

整体来看是Spring框架对JDK的线程池做了封装,公开发者使用,毕竟框架嘛,肯定是把方便留给开发者。

4、并发流线程池。

List list = new ArrayList<>(4);

list.add("A");

list.add("B");

list.add("C");

list.add("D");

list.parallelStream().forEach(string -> {

string = string + "paralleStream";

System.out.println(Thread.currentThread().getName()+":-> "+string);

});

运行实例:

说明:并发流默认使用系统公共的线程池ForkJoinWorkerThread,供整个程序使用。

类图如下,基于分治法,双端窃取算法实现的一种线程池。

ForkJoin实现的了自己的线程工厂命名。

也可以自定义并发流线程,然后提交任务,一般并发流适用于短暂耗时业务,避免拖垮整个线程池业务.

5、实现一个基于系统公用线程池工具类,运行这个系统中的异步业务.

public final class CustomExecutors {

/**

* 核心线程数大小

*/

private static final int CORE_POOL_SIZE=5;

/**

* 核心线程池大小

*/

private static final int MAX_POOL_SIZE=10;

/**

* 线程存活时间

*/

private static final int KEEP_ALIVE_TIME=60;

/**

* 工作队列大小

*/

private static final LinkedBlockingQueue queue=new LinkedBlockingQueue(100);

/**

* 自定义线程池名前缀

*/

private static final String POOL_PREFIX_NAME="Custom-Common-Pool";

private CustomExecutors(){

//throw new XXXXException("un support create pool!");

}

private static ConstomThreadPool constomThreadPool;

/**

* 静态块初始化只执行一次,不关闭,整个系统公用一个线程池

*/

static {

constomThreadPool=new ConstomThreadPool(CORE_POOL_SIZE,MAX_POOL_SIZE,KEEP_ALIVE_TIME,TimeUnit.SECONDS,queue,POOL_PREFIX_NAME);

}

/**

* 单例模式获取线程池

* @return ExecutorService

*/

private static ExecutorService getInstance(){

return constomThreadPool;

}

private static Future> submit(Runnable task){

return constomThreadPool.submit(task);

}

private static Future submit(Runnable task, T result){

return constomThreadPool.submit(task,result);

}

private static Future submit(Callable task){

return constomThreadPool.submit(task);

}

private static void execute(Runnable task){

constomThreadPool.execute(task);

}

}

三、业界知名自定义线程池扩展使用.

1、org.apache.tomcat.util.threads;【Tomcat线程池】

2、XXL-JOB分布式任务调度框架的快慢线程池,线程池任务隔离.

public class JobTriggerPoolHelper {

private static Logger logger = LoggerFactory.getLogger(JobTriggerPoolHelper.class);

// ---------------------- trigger pool ----------------------

// fast/slow thread pool

private ThreadPoolExecutor fastTriggerPool = null;

private ThreadPoolExecutor slowTriggerPool = null;

public void start(){

fastTriggerPool = new ThreadPoolExecutor(

10,

XxlJobAdminConfig.getAdminConfig().getTriggerPoolFastMax(),

60L,

TimeUnit.SECONDS,

new LinkedBlockingQueue(1000),

new ThreadFactory() {

@Override

public Thread newThread(Runnable r) {

return new Thread(r, "xxl-job, admin JobTriggerPoolHelper-fastTriggerPool-" + r.hashCode());

}

});

slowTriggerPool = new ThreadPoolExecutor(

10,

XxlJobAdminConfig.getAdminConfig().getTriggerPoolSlowMax(),

60L,

TimeUnit.SECONDS,

new LinkedBlockingQueue(2000),

new ThreadFactory() {

@Override

public Thread newThread(Runnable r) {

return new Thread(r, "xxl-job, admin JobTriggerPoolHelper-slowTriggerPool-" + r.hashCode());

}

});

}

public void stop() {

//triggerPool.shutdown();

fastTriggerPool.shutdownNow();

slowTriggerPool.shutdownNow();

logger.info(">>>>>>>>> xxl-job trigger thread pool shutdown success.");

}

// job timeout count

private volatile long minTim = System.currentTimeMillis()/60000; // ms > min

private volatile ConcurrentMap jobTimeoutCountMap = new ConcurrentHashMap<>();

/**

* add trigger

*/

public void addTrigger(final int jobId,

final TriggerTypeEnum triggerType,

final int failRetryCount,

final String executorShardingParam,

final String executorParam,

final String addressList) {

// choose thread pool

ThreadPoolExecutor triggerPool_ = fastTriggerPool;

AtomicInteger jobTimeoutCount = jobTimeoutCountMap.get(jobId);

if (jobTimeoutCount!=null && jobTimeoutCount.get() > 10) { // job-timeout 10 times in 1 min

triggerPool_ = slowTriggerPool;

}

// trigger

triggerPool_.execute(new Runnable() {

@Override

public void run() {

long start = System.currentTimeMillis();

try {

// do trigger

XxlJobTrigger.trigger(jobId, triggerType, failRetryCount, executorShardingParam, executorParam, addressList);

} catch (Exception e) {

logger.error(e.getMessage(), e);

} finally {

// check timeout-count-map

long minTim_now = System.currentTimeMillis()/60000;

if (minTim != minTim_now) {

minTim = minTim_now;

jobTimeoutCountMap.clear();

}

// incr timeout-count-map

long cost = System.currentTimeMillis()-start;

if (cost > 500) { // ob-timeout threshold 500ms

AtomicInteger timeoutCount = jobTimeoutCountMap.putIfAbsent(jobId, new AtomicInteger(1));

if (timeoutCount != null) {

timeoutCount.incrementAndGet();

}

}

}

}

});

}

// ---------------------- helper ----------------------

private static JobTriggerPoolHelper helper = new JobTriggerPoolHelper();

public static void toStart() {

helper.start();

}

public static void toStop() {

helper.stop();

}

/**

* @param jobId

* @param triggerType

* @param failRetryCount

* >=0: use this param

* <0: use param from job info config

* @param executorShardingParam

* @param executorParam

* null: use job param

* not null: cover job param

*/

public static void trigger(int jobId, TriggerTypeEnum triggerType, int failRetryCount, String executorShardingParam, String executorParam, String addressList) {

helper.addTrigger(jobId, triggerType, failRetryCount, executorShardingParam, executorParam, addressList);

}

}

①、定义两个线程池,一个是fastTriggerPool,另一个是slowTriggerPool。②、定义一个容器ConcurrentMap,存放每个任务的执行慢次数,60秒后自动清空该容器。③、在线程的run()方法中计算每个任务的耗时,如果大于500ms,则任务的慢执行次数+1。

3、基于线程池动态监控动态线程池

引用图片,线程池常见问题

还有比较多啦,例如ES的基于JDK的线程池,Dubbo中等。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Python基础6 爬虫中使用无头浏览器 PhantomJS(python基础词汇)
下一篇:sort and sorted用法(sorting是什么意思)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~