Python绘制图像(Matplotlib)(Ⅲ)

网友投稿 277 2022-08-27


Python绘制图像(Matplotlib)(Ⅲ)

import matplotlib as mplimport matplotlib.pyplot as pltimport numpy as np

def no1(): """ 堆积柱状图 :return: """ mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False x = [1, 2, 3, 4, 5] y = [6, 10, 4, 5, 1] y1 = [2, 6, 3, 8, 5] plt.bar( x, y, align="center", color="#66c2a5", tick_label=[ 'A', 'B', 'C', 'D', 'E'], label="班级A") plt.bar(x, y1, align="center", bottom=y, color="#8da0cb", tick_label=['A', 'B', 'C', 'D', 'E'], label="班级B") plt.xlabel("测试难度") plt.ylabel("试卷份数") plt.legend() plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no1.png") plt.show()

def no2(): """ 堆积条形图 :return: """ mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False x = [1, 2, 3, 4, 5] y = [6, 10, 4, 5, 1] y1 = [2, 6, 3, 8, 5] plt.barh( x, y, align="center", color="#66c2a5", tick_label=[ 'A', 'B', 'C', 'D', 'E'], label="班级A") plt.barh(x, y1, align="center", left=y, color="#8da0cb", tick_label=['A', 'B', 'C', 'D', 'E'], label="班级B") plt.ylabel("测试难度") plt.xlabel("试卷份数") plt.legend() plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no2.png") plt.show()

def no3(): """ 多数据并列柱状图 :return: """ mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False x = np.arange(5) y = [6, 10, 4, 5, 1] y1 = [2, 6, 3, 8, 5] bar_width = 0.35 tick_label = ['A', 'B', 'C', 'D', 'E'] plt.bar(x, y, bar_width, color='c', align='center', label='班级A', alpha=0.5) plt.bar(x + bar_width, y1, bar_width, color='b', align='center', label="班级B", alpha=0.5) plt.xlabel("测试难度") plt.ylabel("试卷份数") plt.xticks(x + bar_width // 2, tick_label) plt.legend() plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no3.png") plt.show()

def no4(): """ 多数据平行条形图 :return: """ mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False x = np.arange(5) y = [6, 10, 4, 5, 1] y1 = [2, 6, 3, 8, 5] bar_width = 0.35 tick_label = ['A', 'B', 'C', 'D', 'E'] plt.barh( x, y, bar_width, color='c', align='center', label='班级A', alpha=0.5) plt.barh(x + bar_width, y1, bar_width, color='b', align='center', label="班级B", alpha=0.5) plt.ylabel("测试难度") plt.xlabel("试卷份数") plt.yticks(x + bar_width // 2, tick_label) plt.legend() plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no4.png") plt.show()

def no5(): """ 堆积折线图 :return: """ x = np.arange(1, 6, 1) y = [0, 4, 3, 5, 6] y1 = [1, 3, 4, 2, 7] y2 = [3, 4, 1, 6, 5] labels = ["BluePlanet", "BrownPlanet", "GreenPlanet"] colors = ['#8da0cb', '#fc8d62', "#66c2a5"] plt.stackplot(x, y, y1, y2, labels=labels, colors=colors) plt.legend(loc="upper left") plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no5.png") plt.show()

def no6(): """ 间断条形图 :return: """ mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False # (60,90):从x轴的数值为60的位置起,沿x轴正方向移动90个单位。 # (10, 8):从起点是y轴的数值为10的位置起,沿y轴正方向移动8个单位。 # facecolors:每个柱面的填充颜色 plt.broken_barh([(30, 100), (180, 50), (260, 70)], (20, 8), facecolors='#1f78b4') plt.broken_barh([(60, 90), (190, 20), (230, 30), (280, 60)], (10, 8), facecolors=('#7fc97f', '#beaed4', '#fdc086', '#ffff99')) plt.xlim(0, 360) plt.ylim(5, 35) plt.xlabel('演出时间') plt.xticks(np.arange(0, 361, 60)) plt.yticks([15, 25], ['歌剧院A', '歌剧院B']) plt.grid(ls='-', lw=1, color='gray') plt.title("不同地区的歌剧院的演出时间比较") plt.legend() plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no6.png") plt.show()

def no7(): """ 阶梯图 :return: """ x = np.linspace(1, 10, 10) y = np.sin(x) # where:默认参数是pre,表示x轴上的每个数据点对应的y轴上的数值向左侧绘制水平直线到x轴 # 上的此数据点的左侧相邻数据点为止,左开右闭数据点 # post plt.step(x, y, color='#8dd3c7', where='pre', lw=2) plt.xlim(0, 11) plt.xticks(np.arange(1, 11, 1)) plt.ylim(-1.2, 1.2) plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no7.png") plt.show()

def no8(): """ 堆积直方图 :return: """ mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False scoreT1 = np.random.randint(1, 100, 100) scoreT2 = np.random.randint(1, 100, 100) x = [scoreT1, scoreT2] colors = ['#8dd3c7', '#bebada'] labels = ['班级A', '班级B'] bins = range(0, 101, 10) # stacked 设置为False得到并排直方图 # histtype 设置直方图形状(stepfilled:阶梯图) plt.hist(x, bins=bins, color=colors, histtype="bar", rwidth=10, stacked=True, label=labels) plt.xlabel('测试成绩') plt.ylabel("学生人数") plt.title("不同班级的测试成绩的直方图") plt.legend(loc='upper left') plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no8.png") plt.show()

def no9(): """ 饼图 :return: """ mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False labels = 'A 难度水平', 'B 难度水平', 'C 难度水平', 'D 难度水平' students = [0.35, 0.15, 0.20, 0.30] colors = ['#377eb8', '#4daf4a', '#984ea3', '#ff7f00'] explode = (0.1, 0.1, 0.1, 0.1) # students:饼片代表的百分比 # explode:饼片边缘偏离半径的百分比 # labels:标记每份饼片的文本标签内容 # autopct: 饼片文本标签内容对应的数值百分比样式 # startangle:从x轴作为其实位置,第一个饼片逆时针旋转的角度 # shadow:是否绘制饼片的阴影 # colors: 饼片的颜色 plt.pie(students, explode=explode, labels=labels, autopct="%3.1f%%", startangle=45, shadow=True, colors=colors) plt.title('选择不同难度测试试卷的学生的百分比') plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no9.png") plt.show()

def no10(): """ 非分裂式饼图 :return: """ mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False labels = 'A 难度水平', 'B 难度水平', 'C 难度水平', 'D 难度水平' students = [0.35, 0.15, 0.20, 0.30] colors = ['#377eb8', '#4daf4a', '#984ea3', '#ff7f00'] explode = (0.1, 0.1, 0.1, 0.1) plt.pie(students, labels=labels, autopct="%3.1f%%", startangle=45, colors=colors, pctdistance=0.7, labeldistance=1.2) plt.title('选择不同难度测试试卷的学生的百分比') plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no10.png") plt.show()

def no11(): """ 内嵌环形饼图 :return: """ mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False elements = ["面粉", '砂糖', '奶油', '草莓酱', '坚果'] weight1 = [40, 15, 20, 10, 15] weight2 = [30, 25, 15, 20, 10] colormapList = ["#e41a1c", '#377eb8', '#4daf4a', '#984ea3', '#ff7f00'] outer_colors = colormapList inner_colors = colormapList wedges1, texts1, autotexts1 = plt.pie(weight1, autopct="%3.1f%%", radius=1, pctdistance=0.85, colors=outer_colors, textprops=dict(color='w'), wedgeprops=dict(width=0.3, edgecolor='w')) wedges2, texts2, autotexts2 = plt.pie(weight2, autopct="%3.1f%%", radius=0.7, pctdistance=0.75, colors=inner_colors, textprops=dict(color='w'), wedgeprops=dict(width=0.3, edgecolor='w')) plt.legend(wedges1, elements, fontsize=12, title='配料表', loc='center left', bbox_to_anchor=(0.91, 0, 0.3, 1)) plt.setp(autotexts1, size=15, weight='bold') plt.setp(autotexts2, size=15, weight="bold") plt.setp(texts1, size=12) plt.title('不同果酱面包配料比例表的比较') plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no11.png") plt.show()

def no12(): """ 多组定量数据的分布比较 :return: """ mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False testA = np.random.randn(5000) testB = np.random.randn(5000) testList = [testA, testB] labels = ['随机数生成器AlphaRM', '随机数生成器BetaRM'] colors = ['#1b9e77', "#d95f02"] whis = 1.6 width = 0.35 # testList 绘制箱线图的输入数据 # whis 四分位间距的倍数,用来确定箱须包含数据的范围的大小 # widths 设置箱体的宽度 # sym 离群值的标记样式 # labels 绘制每一个数据集的刻度标签 # patch_artisi 是否给箱体添加颜色 bplot = plt.boxplot(testList, whis=whis, widths=width, sym='o', labels=labels, patch_artist=True) for patch, color in zip(bplot["boxes"], colors): patch.set_facecolor(color) plt.ylabel('随机数值') plt.title("生成器抗干扰能力的稳定性比较") plt.grid(axis='y', ls=':', lw=1, color='gray', alpha=0.4) plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no12.png") plt.show()

def no13(): """ 水平方向的箱线图 :return: """ mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False x = np.random.randn(1000) plt.boxplot(x, vert=False) plt.xlabel('随机数值') plt.yticks([1], ['随机数生成器AlphaRM'], rotation=90) plt.title("随机数生成器抗干扰能力的稳定性") plt.grid(axis='x', ls=':', lw=1, color='gray', alpha=0.4) plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no13.png") plt.show()

def no14(): """ 不绘制离群值的水平放置的箱线图 :return: """ mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False x = np.random.randn(1000) plt.boxplot(x, vert=False, showfliers=False) plt.xlabel('随机数值') plt.yticks([1], ['随机数生成器AlphaRM'], rotation=90) plt.title("随机数生成器抗干扰能力的稳定性") plt.grid(axis='x', ls=':', lw=1, color='gray', alpha=0.4) plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no14.png") plt.show()

def no15(): """ 误差棒图 :return: """ x = np.linspace(0.1, 0.6, 10) y = np.exp(x) error = 0.05 + 0.15 * x lower_error = error upper_error = 0.3 * error error_limit = [lower_error, upper_error] # x, y 数据点位置 # yerr: 单一数值的非对称形式误差范围 # fmt: 数据点的标记样式和数据点标记的连接线样式 # ecolor:误差棒的线条颜色 # elinewidth:误差棒的线条粗细 # ms:数据点的标记边缘颜色 # mfc:数据点的标记颜色 # mec: 数据点的标记边缘颜色 # capthick:误差棒边界横杠的厚度 # capsize: 误差棒边界横杠的大小 plt.errorbar(x, y, yerr=error_limit, fmt=":o", ecolor='y', elinewidth=4, ms=5, mfc='c', mec='r', capthick=1, capsize=2) plt.xlim(0, 0.7) plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no15.png") plt.show()

def no16(): """ 带误差棒的柱状图 :return: """ mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False x = np.arange(5) y = [100, 68, 79, 91, 82] std_err = [7, 2, 6, 10, 5] error_attri = dict(elinewidth=2, ecolor='black', capsize=3) plt.bar(x, y, color='c', width=0.6, align='center', yerr=std_err, error_kw=error_attri, tick_label=["园区 1", "园区 2", "园区 3", "园区 4", "园区 5"]) plt.xlabel("芒果种植区") plt.ylabel("收割量") plt.title("不同芒果种植区的单次收割量") plt.grid(True, axis='y', ls=':', color='gray', alpha=0.2) plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no16.png") plt.show()

def no17(): """ 绘制带误差棒的条形图 :return: """ mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False x = np.arange(5) y = [1200, 2400, 1800, 2200, 1600] std_err = [150, 100, 180, 130, 80] bar_width = 0.6 colors = ["#e41a1c", "#377eb8", '#4daf4a', '#984ea3', '#ff7f00'] plt.barh(x, y, bar_width, color=colors, align="center", xerr=std_err, tick_label=['家庭', '小说', '心理', '科技', '儿童']) plt.xlabel("订购数量") plt.ylabel("图书种类") plt.title("大型图书展销会的不同图书种类的采购情况") plt.grid(True, axis='x', ls=':', color='gray', alpha=0.2) plt.xlim(0, 2600) plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no17.png") plt.show()

def no18(): """ 带误差棒的多数据并列柱状图 :return: """ mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False x = np.arange(5) y1 = [100, 68, 79, 91, 82] y2 = [120, 75, 70, 78, 85] std_err1 = [7, 2, 6, 10, 5] std_err2 = [5, 1, 4, 8, 9] error_attri = dict(elinewidth=2, ecolor='black', capsize=3) bar_width = 0.4 tick_label = ["园区 1", "园区 2", "园区 3", "园区 4", "园区 5"] plt.bar(x, y1, bar_width, color='#87CEEB', align='center', yerr=std_err1, error_kw=error_attri, label="2010") plt.bar(x + bar_width, y2, bar_width, color='#CD5C5C', align='center', yerr=std_err2, error_kw=error_attri, label="2013") plt.xlabel("芒果种植区") plt.ylabel("收割量") plt.xticks(x + bar_width // 2, tick_label) plt.title("不同年份芒果种植区的单次收割量") plt.grid(True, axis='y', ls=':', color='gray', alpha=0.2) plt.legend() plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no18.png") plt.show()

def no19(): """ 带误差棒的堆积柱状图 :return: """ mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False x = np.arange(5) y1 = [1200, 2400, 1800, 2200, 1600] y2 = [1050, 2100, 1300, 1600, 1340] std_err1 = [150, 100, 180, 130, 80] std_err2 = [120, 110, 170, 150, 120] bar_width = 0.4 tick_label = ['家庭', '小说', '心理', '科技', '儿童'] error_attri = dict(elinewidth=2, ecolor='black', capsize=0) plt.bar( x, y1, bar_width, align="center", color="#6495ED", tick_label="地区 1", error_kw=error_attri) plt.bar( x, y2, bar_width, bottom=y1, align="center", color="#FFA500", yerr=std_err2, tick_label="地区 2", error_kw=error_attri) plt.xlabel("图书种类") plt.ylabel("订购数量") plt.title("不同地区大型图书展销会图书采购情况") plt.grid(True, axis='y', ls=':', color='gray', alpha=0.2) plt.xticks(x, tick_label) plt.legend() plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"3)\no19.png") plt.show()

本篇博文特别感谢刘大成的《Python数据可视化之matplotlib实践》


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Python绘制图像(Matplotlib)(Ⅱ)(python如何用matplotlib绘图)
下一篇:Java实现经典角色扮演侦探游戏游戏的示例代码
相关文章

 发表评论

暂时没有评论,来抢沙发吧~