vue项目接口域名动态的获取方法
384
2022-08-27
Python绘制图像(Matplotlib)(Ⅸ)(matplotlib是一个主要用于绘制什么图表的Python库)
import matplotlib.pyplot as pltimport numpy as np
def no1(): """ 关键字参数的设置形式 :return: """ fig = plt.figure() ax = fig.add_subplot(111) font = {"family": "serif", "color": "navy", "weight": "black", "size": 16} x = np.linspace(0.0, 2 * np.pi, 500) y = np.cos(2 * x) * np.sin(2 * x) ax.plot(x, y, color='k', ls='-', lw=2) ax.set_title("keyword mode is '**font'", **font) ax.text(1.5, 0.52, "cos(2*x)*sin(2*x)", **font) ax.set_xlabel("time (h)", **font) ax.set_ylabel(r"$\Delta$height (cm)", **font) ax.set_xlim(0, 2 * np.pi) plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"9)\no1.png") plt.show()
def no2(): """ 线条类型的显示样式设置方法 :return: """ font = dict(family="serif", color="navy", weight="black", size=16) color = "skyblue" linewidth = 3 fig = plt.figure() ax = fig.add_subplot(111) linestyleList = ['-', '--', '-.', ':'] x = np.arange(1, 11, 1) y = np.linspace(1, 1, 10) ax.text(4, 4.0, "line styles", **font) for i, ls in enumerate(linestyleList): ax.text(0, i + 0.5, "'{}'".format(ls), **font) ax.plot( x, (i + 0.5) * y, linestyle=ls, color=color, linewidth=linewidth) ax.set_xlim(-1, 11) ax.set_ylim(0, 4.5) ax.margins(0.2) ax.set_xticks([]) ax.set_yticks([]) plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"9)\no2.png") plt.show()
def no3(): """ 破折号线条样式的不同展现形式的设置方法 :return: """ font_style = dict(family="serif", weight="black", size=12) line_marker_style1 = dict(linestyle='--', linewidth=2, color='maroon', markersize=10) line_marker_style2 = dict(linestyle='--', linewidth=2, color='cornflowerblue', markersize=10) line_marker_style3 = dict(linestyle='--', linewidth=2, color='turquoise', markersize=10) fig = plt.figure() ax = fig.add_subplot(111, fc='honeydew') x = np.linspace(0, 2 * np.pi, 500) y = np.sin(x) * np.cos(x) ax.plot(x, y, dashes=[10, 2], label='dashed=[10,2]', **line_marker_style1) ax.plot(x, y + 0.2, dashes=[3, 1], label='dashed=[3,1]', **line_marker_style2) ax.plot(x, y + 0.4, dashes=[2, 2, 8, 2], label='dashed=[2,2,8,2]', **line_marker_style3) ax.axis([0, 2 * np.pi, -0.7, 1.2]) ax.legend(ncol=3, bbox_to_anchor=(0.00, 0.95, 1.0, 0.05), mode="expand", fancybox=True, shadow=True, prop=font_style) plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"9)\no3.png") plt.show()
def no4(): """ 标记填充样式的设置方法 :return: """ font_style = dict(family="sans-serif", color="saddlebrown", weight="semibold", size=16) line_marker_style = dict(linestyle=":", linewidth=2, color='cornflowerblue', markerfacecoloralt="lightgrey", marker="o", markersize=18) fig = plt.figure() ax = fig.add_subplot(111) fillstyleList = ["full", "left", "right", "bottom", "top", "none"] x = np.arange(3, 11, 1) y = np.linspace(1, 1, 8) ax.text(4, 6.5, "fill styles", **font_style) for i, fs in enumerate(fillstyleList): ax.text(0, i + 0.4, "'{}'".format(fs), **font_style) ax.plot(x, (i + 0.5) * y, fillstyle=fs, **line_marker_style) ax.set_xlim(-1, 11) ax.set_ylim(0, 7) ax.margins(0.3) ax.set_xticks([]) ax.set_yticks([]) plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit " r"9)\no4.png") plt.show()
本篇博文特别感谢刘大成的《Python数据可视化之matplotlib实践》
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~