多平台统一管理软件接口,如何实现多平台统一管理软件接口
389
2022-08-30
dynamic programming_矩阵链乘法(matrix_chain_order)_python
文章目录
theory
specific examples:
Construct the optimal solutionpython:
theory
specific examples:
Construct the optimal solution
python:
import mathdef matrix_chain_order(list_p): """[summary] Args: list_p ([type]): [description] Returns: [type]: [description] """ n = len(list_p)-1 ''' we could think that the table_min_costs contains the optimal cost values of the different subproblem(sub_matrix chain) scales (from bottom to top to solve the problem) ''' # the table to save the lowest costs to multiple the matrix chain table_min_costs = [[0 for i in range(0, n+1)] for j in range(0, n+1)] # (n+1)*(n+1) # the table_save_partition save the the optimal partition point:make the multiplication cost lowest each scale cases table_save_partition = [ [0 for i in range(0, n+1)] for j in range(0, n+1)] # (n)*(n) ''' the length of the sub_matrix chain is 1 cases could be centralized process:assign them as 0 in the table_min_costs ''' for i in range(1, n+1): table_min_costs[i][i] = 0 ''' the essential part of the algorithm: ''' # length is the chain length(traverse the all kinds of sub matrix chains cases(length>1)) for length in range(2, n+1): ''' each specific length cases have different partition schemes: traverse all these divide cases:''' for start_i in range(1, n-length+2): # the start_i is the index of each sub_matrix chain # make the j-i+1==l(namely ,the length of sub_matrix chain) end_i = start_i+length-1 # initial the costs as infinite value: table_min_costs[start_i][end_i] = math.inf """ # focus on the each sepecified sub_matrix chain # the following loop will test(run) j-i times:to find the optimal split point: # the index to_opt_partition is the index of the optimal split point(the matrix to_opt_partition matrix will be belong to the former subproble(sub_matrix chain)) """ for to_opt_partition in range(start_i, end_i): ''' the to_opt_partition >=start_i>=1 ''' to_lowest_cost = table_min_costs[start_i][to_opt_partition] + table_min_costs[to_opt_partition+1][end_i] + \ list_p[start_i-1]*list_p[to_opt_partition]*list_p[end_i] if to_lowest_cost < table_min_costs[start_i][end_i]: table_min_costs[start_i][end_i] = to_lowest_cost table_save_partition[start_i][end_i] = to_opt_partition return table_min_costs, table_save_partitiondef print_optimal_parentheses(s, i, j): """ matrix_index=1 Args: s ([list]): [table_save_partition(optimal)] i ([int]): [start_i index of the subproblem] j ([int]): [end_i index of the subproblem] """ """ the simplest case (the sub_matrix chain length is 1) the case as the recursive exit:""" if i == j: print("A"+str(i), end="") else: print("(", end="") print_optimal_parentheses(s, i, s[i][j]) print_optimal_parentheses(s, s[i][j]+1, j) print(")", end="")def test(list_p): table_min_costs, table_save_partition = matrix_chain_order(list_p) print_optimal_parentheses(table_save_partition, 1, len(list_p)-1)list_p = [30, 35, 15, 5, 10, 20, 25]test(list_p)
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~