python实现对简单的运算型验证码的识别【不使用OpenCV】(python opencv 验证码识别)

网友投稿 280 2022-08-30


python实现对简单的运算型验证码的识别【不使用OpenCV】(python opencv 验证码识别)

python实现对简单的运算型验证码的识别【不使用OpenCV】 灰度化,在RGB模型中,如果R=G=B时,则彩色表示一种灰度颜色,其中R=G=B的值叫灰度值,因此,灰度图像每个像素只需一个字节存放灰度值(又称强度值、亮度值),灰度范围为0-255。

下面我们开始实现这个验证码的识别。

1、图片读取

从网站上下载大量同类型的验证码,人工标记上每个验证码的识别结果

2、图片灰度化、二值化

灰度化,在RGB模型中,如果R=G=B时,则彩色表示一种灰度颜色,其中R=G=B的值叫灰度值,因此,灰度图像每个像素只需一个字节存放灰度值(又称强度值、亮度值),灰度范围为0-255。 通过PIL中的算法即可快速实现灰度化:​​​img=img.convert("L")​​​ 这样我们就得到了R=G=B的代码 接下来我们要进行二值化,二值化的目的就是把文字和背景部分严格区分开。可以通过尝试的方法,找到一个阈值,然后将RGB大于阈值的置为1,否则置为0。

def ez_map(thresold): res = [] for i in range(256): if i < thresold: res.append(0) else: res.append(1) return resdef pre_hd_ez(img): img = img.convert("L") # 二值 thresold = 140 table = ez_map(thresold) # img=img.convert("1") img = img.point(table, '1') return img

3、降噪

本次实践并没有用到,因为验证码比较简单,并没有用到此步骤

4、分割

我们根据验证码本身,通过分割割除每一块数字、符号的图片

def pre_split_img(img): imgs = [] num1 = (20,6,31,21) fuhao = (36,6,50,21) num2 = (51,6,62,21) img_num1 = img.crop(num1) img_fuhao = img.crop(fuhao) img_num2 = img.crop(num2) imgs.append(img_num1) imgs.append(img_fuhao) imgs.append(img_num2) return imgs

5、获取样本并计算特征值

接下来我们有了各个数字图片的样本。

如何和新来的图片进行匹配?

我们要通过计算黑色像素点/总像素点的值然后对所有图片都如此操作,分别取 分割出来的6份中第一份的平均值,这样的到了能代表0这个图片的6份数值存起来后面用。

def get_block_score(img): sum = 0 black = 0 for i in range(img.size[0]): for j in range(img.size[1]): if img.getpixel((i, j)) == 0: black += 1 sum += 1 return black, sum# 计算特征值def get_features_vaule_by_img(img): wide = img.size[0] one_wide = int(wide / 2) high = img.size[1] one_high = int(high / 3) score_lsit = [] for i in range(3): for j in range(2): img_one = img.crop((j * one_wide, i * one_high, (j + 1) * one_wide, (i + 1) * one_high)) black, sum = get_block_score(img_one) score_lsit.append(black * 1.0 / sum) return score_lsit

6、识别图片

将计算好的 6个值与我们之前给0-9计算的这个值分别进行比较 找出和0-9最相似的数字 这个数字就是我们想要的结果 完整代码:

import base64import jsonimport osimport randomimport stringfrom PIL import Image, ImageDrawimport requestsimport ssldef getimg(filename): url = "【验证码获取网址已删除】" r = requests.get(url, verify=False) # print(r.text) res = json.loads(r.text) print(res) # print(res['content']) f = open(filename, 'wb') # 获取动漫头像 anime = res['content'].split(',')[1] # print(anime) # 对返回的头像进行解码 anime = base64.b64decode(anime) # 将头像写入文件当中 f.write(anime) f.close()def get_block_score(img): sum = 0 black = 0 for i in range(img.size[0]): for j in range(img.size[1]): if img.getpixel((i, j)) == 0: black += 1 sum += 1 return black, sum# 计算特征值def get_features_vaule_by_img(img): wide = img.size[0] one_wide = int(wide / 2) high = img.size[1] one_high = int(high / 3) score_lsit = [] for i in range(3): for j in range(2): img_one = img.crop((j * one_wide, i * one_high, (j + 1) * one_wide, (i + 1) * one_high)) black, sum = get_block_score(img_one) score_lsit.append(black * 1.0 / sum) return score_lsitdef ez_map(thresold): res = [] for i in range(256): if i < thresold: res.append(0) else: res.append(1) return resdef pre_hd_ez(img): img = img.convert("L") # 二值 thresold = 140 table = ez_map(thresold) # img=img.convert("1") img = img.point(table, '1') return imgdef pre_split_img(img): imgs = [] num1 = (20,6,31,21) fuhao = (36,6,50,21) num2 = (51,6,62,21) img_num1 = img.crop(num1) img_fuhao = img.crop(fuhao) img_num2 = img.crop(num2) imgs.append(img_num1) imgs.append(img_fuhao) imgs.append(img_num2) return imgsfilename =""def Base64ToImage(_base64): str = random.sample(string.ascii_letters + string.digits, 16) global filename filename = ''.join(str) +'.jpg' f = open(filename, 'wb') # 获取动漫头像 anime = _base64.split(',')[1] # 对返回的头像进行解码 anime = base64.b64decode(anime) # 将头像写入文件当中 f.write(anime) f.close() img = Image.open(filename) return imgfuhao = [ [0.08571428571428572, 0.08571428571428572, 0.42857142857142855, 0.42857142857142855, 0.11428571428571428, 0.11428571428571428],[0.2857142857142857, 0.0, 0.2857142857142857, 0.0, 0.0, 0.0]]nums1=[[0.36, 0.44, 0.4, 0.4, 0.36, 0.44],[0.24, 0.32, 0.0, 0.4, 0.24, 0.56],[0.32, 0.4, 0.04, 0.4, 0.48, 0.32],[0.32, 0.48, 0.16, 0.64, 0.32, 0.48],[0.04, 0.48, 0.36, 0.52, 0.16, 0.44],[0.4, 0.24, 0.28, 0.48, 0.32, 0.4],[0.36, 0.32, 0.56, 0.48, 0.36, 0.48],[0.32, 0.48, 0.04, 0.44, 0.24, 0.12],[0.4, 0.48, 0.56, 0.64, 0.4, 0.48],[0.4, 0.44, 0.4, 0.64, 0.24, 0.44]]nums2=[[0.44, 0.36, 0.4, 0.4, 0.44, 0.36],[0.4, 0.16, 0.2, 0.2, 0.4, 0.4],[0.4, 0.32, 0.12, 0.32, 0.56, 0.24],[0.4, 0.4, 0.24, 0.56, 0.4, 0.4],[0.12, 0.4, 0.4, 0.52, 0.2, 0.44],[0.48, 0.16, 0.36, 0.4, 0.4, 0.32],[0.44, 0.24, 0.64, 0.4, 0.44, 0.4],[0.4, 0.4, 0.2, 0.28, 0.36, 0.0],[0.48, 0.4, 0.64, 0.56, 0.48, 0.4],[0.48, 0.36, 0.48, 0.56, 0.32, 0.36]]#getimg('result.jpg') # 获取图片# 先预处理、二值化def Recognition(_base64): img = Base64ToImage(_base64) img = pre_hd_ez(img) # 二值化 imgs = pre_split_img(img) # 分隔 global filename os.remove(filename) code_num1 = get_features_vaule_by_img(imgs[0]) # 计算特征值 code_fuhao = get_features_vaule_by_img(imgs[1]) # 计算特征值 code_num2 = get_features_vaule_by_img(imgs[2]) # 计算特征值 # print('code1:'+str( code_num1), 'code2:'+str(code_num2)) a = 0 b = 0 for index in range(0, 10): if (code_num1 == nums1[index]): # print(index) a = index break for index in range(0, 10): if (code_num2 == nums2[index]): # print(index) b = index break if code_fuhao == fuhao[0]: print(str(a) + '+' + str(b) + '=' + str(a + b)) return a+b elif code_fuhao == fuhao[1]: print(str(a) + '*' + str(b) + '=' + str(a * b)) return a * b else: print('符号识别Error')Recognition("\nawUXIIKNq7CwcD8uQlyJG3APll64EEJ+Tk5mhK8QUtx33vl95kwmE/n6/P6z9v72cRj/r/yXebia\nZOHC6Ok08L+umjVZWB5TmZxHWjPOcplX1QnfeQ7rd3lV/8YFgM3HS2KGiDp1g46WXMLa1A55BLC4\nsATacgblCqzYshXqJqwKHICFewPiJXXdUhM8AHMKdo5J1Um1baAao0dy80pY7RnGu3R8XNzdO5u6\nLbDnh70+3KilrTDidNlPV9dqM1ikN03XHEkpr/YIH3b77+Uw4E0sqZTXSCZnoSWlxvCS5UtaYbkx\nlBdzXVawHClbQt7CGJYdxeoLuzABXnYay2j5DqyoqVHYxfgg11uEVeGW9saZBn7Oc23C4m/6x+dL\nbNXkV2AtiEvrVz6+vSJTWOe3wiId1hSW9fT4zkFBaXv97cA66WA7a0bX3vLC8S1JCoQmwoe/ZOiI\neS3ASv09HwlXy9FLEMQDJay0DY5Rq64BLNdE6UQ3YUlp87Tw/Dk9hk5WrSD6Y0jySsXFbL6V0hSW\nm0MLy4lrBRbAgR9uKiKHtY1LSVjxQtRjWMXu+B3C57+q5Uvlp/ALMYagzpj0SzyGqbicVUmY0SvP\n+iwAyw0kC5kNVyElReYqLaw0ho6kgOtkTpN+jGCh23CUeBw9jJnXP/ahbVoCvLGZVM8YFgMFzxVL\nmszkgYQns0LXkHyoAM1K+47h95nJprc1gevFfCshu8L2oQIOhOwk7UjV4JwyIy5wTquf2N8zb4D4\nIaN88SgEm/JagDVKP/C8qqF/AD8/f75l3isgAAAAAElFTkSuQmCC")


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Java常用测试工具大全
下一篇:Java Lambda表达式超详细介绍
相关文章

 发表评论

暂时没有评论,来抢沙发吧~