Java8中CompletableFuture使用场景与实现原理

网友投稿 274 2022-08-30


Java8中CompletableFuture使用场景与实现原理

目录1.概述2.为什么引入CompletableFuture3.功能3.源码追踪4.总结

1.概述

CompletableFuture是jdk1.8引入的实现类。扩展了Future和CompletionStage,是一个可以在任务完成阶段触发一些操作Future。简单的来讲就是可以实现异步回调。

2.为什么引入CompletableFuture

对于jdk1.5的Future,虽然提供了异步处理任务的能力,但是获取结果的方式很不优雅,还是需要通过阻塞(或者轮训)的方式。如何避免阻塞呢?其实就是注册回调。

业界结合观察者模式实现异步回调。也就是当任务执行完成后去通知观察者。比如Netty的ChannelFuture,可以通过注册监听实现异步结果的处理。

Netty的ChannelFuture

public Promise addListener(GenericFutureListener extends Future super V>> listener) {

checkNotNull(listener, "listener");

synchronized (this) {

addListener0(listener);

}

if (isDone()) {

notifyListeners();

}

return this;

}

private boolean setValue0(Object objResult) {

if (RESULT_UPDATER.compareAndSet(this, null, objResult) ||

RESULT_UPDATER.compareAndSet(this, UNCANCELLABLE, objResult)) {

if (checkNotifyWaiters()) {

notifyListeners();

}

return true;

}

return false;

}

通过addListener方法注册监听。如果任务完成,会调用notifyListeners通知。

CompletableFuture通过扩展Future,引入函数式编程,通过回调的方式去处理结果。

3.功能

CompletableFuture的功能主要体现在他的CompletionStage。

可以实现如下等功能

转换(thenCompose)组合(thenCombine)消费(thenAccept)运行(thenRun)。带返回的消费(thenApply)

消费和运行的区别:

消费使用执行结果。运行则只是运行特定任务。具体其他功能大家可以根据需求自行查看。

CompletableFuture借助CompletionStage的方法可以实现链式调用。并且可以选择同步或者异步两种方式。

这里举个简单的例子来体验一下他的功能。

public static void thenApply() {

ExecutorService executorService = Executors.newFixedThreadPool(2);

CompletableFuture cf = CompletableFuture.supplyAsync(() -> {

try {

// Thread.sleep(2000);

} catch (Exception e) {

e.printStackTrace();

}

System.out.println("supplyAsync " + Thread.currentThread().getName());

return "hello";

}, executorService).thenApplyAsync(s -> {

System.out.println(s + "world");

return "hhh";

}, executorService);

cf.thenRunAsync(() -> {

System.out.println("ddddd");

});

cf.thenRun(() -> {

System.out.println("ddddsd");

});

cf.thenRun(() -> {

System.out.println(Thread.currentThread());

System.out.println("dddaewdd");

});

}

执行结果

supplyAsync pool-1-thread-1helloworlddddddddddsdThread[main,5,main]dddaewdd

根据结果我们可以看到会有序执行对应任务。

注意:

如果是同步执行cf.thenRun。他的执行线程可能main线程,也可能是执行源任务的线程。如果执行源任务的线程在main调用之前执行完了任务。那么cf.thenRun方法会由main线程调用。

这里说明一下,如果是同一任务的依赖任务有多个:

如果这些依赖任务都是同步执行。那么假如这些任务被当前调用线程(main)执行,则是有序执行,假如被执行源任务的线程执行,那么会是倒序执行。因为内部任务数据结构为LIFO。如果这些依赖任务都是异步执行,那么他会通过异步线程池去执行任务。不能保证任务的执行顺序。

上面的结论是通过阅读源代码得到的。下面我们深入源代码。

3.源码追踪

创建CompletableFuture

创建的方法有很多,甚至可以直接new一个。我们来看一下supplyAsync异步创建的方法。

public static CompletableFuture supplyAsync(Supplier supplier,

Executor executor) {

return asyncSupplyStage(screenExecutor(executor), supplier);

}

static Executor screenExecutor(Executor e) {

if (!useCommonPool && e == ForkJoinPool.commonPool())

return asyncPool;

if (e == null) throw new NullPointerException();

return e;

}

入参Supplier,带返回值的函数。如果是异步方法,并且传递了执行器,那么会使用传入的执行器去执行任务。否则采用公共的ForkJoin并行线程池,如果不支持并行,新建一个线程去执行。

这里我们需要注意ForkJoin是通过守护线程去执行任务的。所以必须有非守护线程的存在才行。

asyncSupplyStage方法

static CompletableFuture asyncSupplyStage(Executor e,

Supplier f) {

if (f == null) throw new NullPointerException();

CompletableFuture d = new CompletableFuture();

e.execute(new AsyncSupply(d, f));

return d;

}

这里会创建一个用于返回的CompletableFuture。

然后构造一个AsyncSupply,并将创建的CompletableFuture作为构造参数传入。那么,任务的执行完全依赖AsyncSupply。

AsyncSupply#run

public void run() {

CompletableFuture d; Supplier f;

if ((d = dep) != null && (f = fn) != null) {

dep = null; fn = null;

if (d.result == null) {

try {

d.completeValue(f.get());

} catch (Throwable ex) {

d.completeThrowable(ex);

}

}

d.postComplete();

}

}

1.该方法会调用Supplier的get方法。并将结果设置到CompletableFuture中。我们应该清楚这些操作都是在异步线程中调用的。

2.d.postComplete方法就是通知任务执行完成。触发后续依赖任务的执行,也就是实现CompletionStage的关键点。在看postComplete方法之前我们先来看一下创建依赖任务的逻辑。

thenAcceptAsync方法

public CompletableFuture thenAcceptAsync(Consumer super T> action) {

return uniAcceptStage(asyncPool, action);

}

private CompletableFuture uniAcceptStage(Executor e,

Consumer super T> f) {

if (f == null)http:// throw new NullPointerException();

CompletableFuture d = new CompletableFuture();

if (e != null || !d.uniAccept(this, f, null)) {

# 1

UniAccept c = new UniAccept(e, d, this, f);

push(c);

c.tryFire(SYNC);

}

return d;

}

上面提到过。thenAcceptAsync是用来消费CompletableFuture的。该方法调用uniAcceptStage。

uniAcceptStage逻辑:

1.构造一个CompletableFuture,主要是为了链式调用。

2.如果为异步任务,直接返回。因为源任务结束后会触发异步线程执行对应逻辑。

3.如果为同步任务(e==null),会调用d.uniAccept方法。这个方法在这里逻辑:如果源任务完成,调用f,返回true。否则进入if代码块(Mark 1)。

4.如果是异步任务直接进入if(Mark 1)。

Mark1逻辑:

1.构造一个UniAccept,将其push入栈。这里通过CAS实现乐观锁实现。

2.调用c.tryFire方法。

final CompletableFuture tryFire(int mode) {

CompletableFuture d; CompletableFuture a;

if ((d = dep) == null ||

!d.uniAccept(a = src, fn, mode > 0 ? null : this))

return null;

dep = null; src = null; fn = null;

return d.postFire(a, mode);

}

1.会调用d.uniAccept方法。其实该方法判断源任务是否完成,如果完成则执行依赖任务,否则返回false。

2.如果依赖任务已经执行,调用d.postFire,主要就是Fire的后续处理。根据不同模式逻辑不同。这里简单说一下,其实mode有同步异步,和迭代。迭代为了避免无限递归。

这里强调一下d.uniAccept方法的第三个参数。

如果是异步调用(mode>0),传入null。否则传入this。

区别看下面代码。c不为null会调用c.claim方法。

try {

if (c != null && !c.claim())

return false;

@SuppressWarnings("unchecked") S s = (S) r;

f.accept(s);

completeNull();

} catch (Throwable ex) {

completeThrowable(ex);

}

final boolean claim() {

Executor e = executor;

if (compareAndSetForkJoinTaskTag((short)0, (short)1)) {

if (e == null)

return true;

executor = null; // disable

e.execute(this);

}

return false;

}

claim方法是逻辑:

如果异步线程为null。说明同步,那么直接返回true。最后上层函数会调用f.accept(s)同步执行任务。如果异步线程不为null,那么使用异步线程去执行this。

this的run任务如下。也就是在异步线程同步调用tryFire方法。达到其被异步线程执行的目的。

public final void run() { tryFire(ASYNC); }

看完上面的逻辑,我们基本理解依赖任务的逻辑。

其实就是先判断源任务是否完成,如果完成,直接在对应线程执行以来任务(如果是同步,则在当前线程处理,否则在异步线程处理)

如果任务没有完成,直接返回,因为等任务完成之后会通过postComplete去触发调用依赖任务。

postComplete方法

final void postComplete() {

/*

* On each step, variable f holds current dependents to pop

* and run. It is extended along only one path at a time,

* pushing others to avoid unbounded recursion.

*/

CompletableFuture> f = this; Completion h;

while ((h = f.stack) != null ||

(f != this && (h = (f = this).stack) != null)) {

CompletableFuture> d; Completion t;

if (f.casStack(h, t = h.next)) {

if (t != null) {

if (f != this) {

pushStack(h);

continue;

}

h.next = null; // detach

}

f = (d = h.tryFire(NESTED)) == null ? this : d;

}

}

}

在源任务完成之后会调用。

其实逻辑很简单,就是迭代堆栈的依赖任务。调用h.tryFire方法。NESTED就是为了避免递归死循环。因为FirePost会调用postComplete。如果是NESTED,则不调用。

堆栈的内容其实就是在依赖任务创建的时候加入进去的。上面我们已经提到过。

4.总结

基本上述源码已经分析了逻辑。

因为涉及异步等操作,我们需要理一下(这里针对全异步任务):

1.创建CompletableFuture成功之后会通过异步线程去执行对应任务。

2.如果CompletableFuture还有依赖任务(异步),会将任务加入到CompletableFuture的堆栈保存起来。以供后续完成后执行依赖任务。

当然,创建依赖任务并不只是将其加入堆栈。如果源任务在创建依赖任务的时候已经执行完成,那么当前线程会触发依赖任务的异步线程直接处理依赖任务。并且会告诉堆栈其他的依赖任务源任务已经完成。

主要是考虑代码的复用。所以逻辑相对难理解。

postComplete方法会被源任务线程执行完源任务后调用。同样也可能被依赖任务线程后调用。

执行依赖任务的方法主要就是靠tryFire方法。因为这个方法可能会被多种不同类型线程触发,所以逻辑也绕一点。(其他依赖任务线程、源任务线程、当前依赖任务线程)

如果是当前依赖任务线程,那么会执行依赖任务,并且会通知其他依赖任务。如果是源任务线程,和其他依赖任务线程,则将任务转换给依赖线程去执行。不需要通知其他依赖任务,避免死递归。

不得不说Doug Lea的编码,真的是艺术。代码的复用性全体现在逻辑上了。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:python_sklearn预测真假新闻(pandas读入两份csv文件)
下一篇:有两个磁盘文件A.txt和B.txt,各存放一行字符,要求把这两个文件中的信息合并(按字母顺序排列),并输出到一个新文件C中。
相关文章

 发表评论

暂时没有评论,来抢沙发吧~