# yyds干货盘点 # 盘点一个Pandas数据清洗题目

网友投稿 241 2022-08-30


# yyds干货盘点 # 盘点一个Pandas数据清洗题目

大家好,我是皮皮。

一、前言

前几天在Python白银交流群有个叫【冻豺】的粉丝问了一道Python清洗数据的问题,这里拿出来给大家分享下,一起学习下。

如何才能把pandas serise里乱七八糟的字符清理干净呢?

二、解决过程

【dcpeng】解答

这里给出了一个示例的代码,使用了apply和lambda和正则表达式,一气呵成,只需要稍微修改下,匹配自己的数据就可以了。

df['主营业务']=df['主营业务'].astype('str').apply(lambda x: re.sub('[0-9+,,.。…、“”^_?::’‘''""()();;【】!!*?]+', '', x))

不过这个是通用的,也会把数字干掉,如果想适配自己的数据,还需要稍微修改下。

这样问题就完美解决了,另外的话,遇到特殊字符什么的,都可以优先使用re.sub或者replace()函数,事半功倍。

三、总结

大家好,我是皮皮。这篇文章主要分享了一个Pandas数据清洗题目,针对该问题给出了具体的解析和代码演示,一共两个方法,帮助粉丝顺利解决了问题。相信肯定还有其他方法的,欢迎大家积极尝试,如果有好方法,记得也分享给我噢,我帮助分享到群里,大家一起学习交流!

最后感谢【冻豺】提问,感谢【dcpeng】和【月神】大佬给出的具体解析和代码演示,感谢【冯诚】等人参与学习交流。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Python3教程: statistics模块的用法(Python3教程第3版)
下一篇:Python3教程:在python/Shell/MySQL中时间获取与格式转换的方法总结
相关文章

 发表评论

暂时没有评论,来抢沙发吧~