多平台统一管理软件接口,如何实现多平台统一管理软件接口
353
2022-08-30
Arrays.sort(arr)是什么排序及代码逻辑
在学习过程中观察到Arrays.sort(arr)算法可以直接进行排序,但不清楚底层的代码逻辑是什么样子,记得自己之前在面试题里面也有面试官问这个问题,只能说研究之后发现还是比较复杂的,并不是网上说的快排或者二分插入之类的。
首先看源码:
public static void sort(int[] a) {
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
}
它调用了DualPivotQuicksort的sort方法,乍一看以为是快排,这是很多网上的博主的说法,继续点开向下看(代码太长,没耐心看可以直接跳过该段代码QWQ):
static void sort(int[] a, int left, int right,
int[] work, int workBase, int workLen) {
// Use Quicksort on small arrays
if (right - left < QUICKSORT_THRESHOLD) {
sort(a, left, right, true);
return;
}
/*
* Index run[i] is the start of i-th run
* (ascending or descending sequence).
*/
int[] run = new int[MAX_RUN_COUNT + 1];
int count = 0; run[0] = left;
// Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]);
} else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]);
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
}
} else { // equal
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
if (--m == 0) {
sort(a, left, right, true);
return;
}
}
}
/*
* The array is not highly structured,
* use Quicksort instead of merge sort.
*/
if (++count == MAX_RUN_COUNT) {
sort(a, left, right, true);
return;
}
}
// Check special cases
// Implementation note: variable "right" is increased by 1.
if (run[count] == right++) { // The last run contains one element
run[++count] = right;
http:// } else if (count == 1) { // The array is already sorted
return;
}
// Determine alternation base for merge
byte odd = 0;
for (int n = 1; (n <<= 1) < count; odd ^= 1);
// Use or create temporary array b for merging
int[] b; // temp array; alternates with a
int ao, bo; // array offsets from 'left'
int blen = right - left; // space needed for b
if (work == null || workLen < blen || workBase + blen > work.length) {
work = new int[blen];
workBase = 0;
}
if (odd == 0) {
System.arraycopy(a, left, work, workBase, blen);
b = a;
bo = 0;
a = work;
ao = workBase - left;
} else {
b = work;
ao = 0;
bo = workBase - left;
}
// Merging
for (int last; count > 1; count = last) {
for (int k = (last = 0) + 2; k <= count; k += 2) {
int hi = run[k], mi = run[k - 1];
for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
b[i + bo] = a[p++ + ao];
} else {
b[i + bo] = a[q++ + ao];
http:// }
}
run[++last] = hi;
}
if ((count & 1) != 0) {
for (int i = right, lo = run[count - 1]; --i >= lo;
b[i + bo] = a[i + ao]
);
run[++last] = right;
}
int[] t = a; a = b; b = t;
int o = ao; ao = bo; bo = o;
}
}
代码很长,简要翻译过来,这里分了好几种情况:
1.数组长度小于286
这里又会调用一个sort方法,点开该sort(),又会划分情况:
数组长度小于47,
当leftmost(导入的一个布尔参数)为true,则使用直接插入排序;
否则会调用另一种插入办法,这里可以观察到一个注释:
/* * Every element from adjoining part plays the role * of sentinel, therefore this allows us to avoid the * left range check on each iteration. Moreover, we use * the more optimized algorithm, so called pair insertion * sort, which is faster (in the context of Quicksort) * than traditional implementation of insertion sort. */
大致意思是:相邻部分的每个元素都扮演着哨兵的角色,因此这允许我们避免在每次迭代中进行左范围检查。此外,我们使用了更优化的算法,即所谓的成对插入排序,它比插入排序的传统实现更快(在快速排序的上下文中)。
不过注意到,原函数参数传参在这里leftmost为true,所以一定是直接插入排序,以上作为了解。
数组长度大于47,采用一种快速排序的办法,这里因为代码太长,学艺不精,参考了一下https://jb51.net/article/236440.htm:
至于大过INSERTION_SORT_THRESHOLD(47)的,用一种快速排序的方法:
1.从数列中挑出五个元素,称为 “基准”(pivot);
2.重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
3.递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
当数组长度大于286时
此时回到那段很长很长的代码段,在判断小于286的长度数组之后,从注解中:
// Check if the array is nearly sorted
这里是指检查数组元素是不是快要排列好了,或者书面一点说,是不是有一定结构了,然后看后面的for循环,注意到一段代码:
if (++count == MAX_RUN_COUNT) {
sort(a, left, right, true);
return;
}
这里的sort和我们上面在数组长度小于286时的那个sort方法是同一个方法,而针对这个count,是用来记录逆序组的,打个比方:
此时有一个数组为1 5 6 9 8 7 2 3
当数组认定我们的顺序应该为升序时,从第一个数开始数,此时9 8 7 2为降序,这就是逆序,将这四个数组合成一个组称为逆序组,然后再从3开始往后看。
当统计到一个逆序组时,count++,所以可以看出,count是用来记逆序组的,那么逆序组越多,这个结构就越混乱
MAX_RUN_COUNT == 67 ,因此当count一直加到67时,就说明已经在一个混乱的临界值了,此时执行sort()方法
通过这一段分析,我们理一下思路:
如果数组能运行到这里,说明数组的长度大于等于286。符合该条件时,我们要判断这个数组是否有一定的结构:
(1)count<67,说明不是那么混乱,有一定结构,跳过;
(2)count>=67,说明已经混乱了,没有结构,执行sort方法,而已知数组长度大于等于286,那么必然大于47,一定执行快速排序。
跳过之后,经过代码的一大堆前置操作,最后看见下面的代码里面一行注释:
//Merging
显然,这里后面用到归并排序了,不详细赘述。
好了,最后总结:
数组长度小于286时,根据数组长度,分两种情况:
数组长度小于47,使用直接插入排序数组长度大于47,使用快速排序数组长度大于286时,根据数组排序情况,分两种情况:数组内顺序较为混乱,即count逆序组数大于等于67,使用快速排序数组内有一定顺序,即count逆序组数小于67,使用归并排序
参考资料:
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~