多平台统一管理软件接口,如何实现多平台统一管理软件接口
227
2022-09-01
Python爬虫技术--基础篇--面向对象高级编程(中)(python爬虫百度文库)
1.多重继承
继承是面向对象编程的一个重要的方式,因为通过继承,子类就可以扩展父类的功能。
回忆一下Animal类层次的设计,假设我们要实现以下4种动物:
Dog - 狗狗;Bat - 蝙蝠;Parrot - 鹦鹉;Ostrich - 鸵鸟。
如果按照哺乳动物和鸟类归类,我们可以设计出这样的类的层次:
但是如果按照“能跑”和“能飞”来归类,我们就应该设计出这样的类的层次:
如果要把上面的两种分类都包含进来,我们就得设计更多的层次:
哺乳类:能跑的哺乳类,能飞的哺乳类;鸟类:能跑的鸟类,能飞的鸟类。
这么一来,类的层次就复杂了:
如果要再增加“宠物类”和“非宠物类”,这么搞下去,类的数量会呈指数增长,很明显这样设计是不行的。
正确的做法是采用多重继承。首先,主要的类层次仍按照哺乳类和鸟类设计:
class Animal(object): pass# 大类:class Mammal(Animal): passclass Bird(Animal): pass# 各种动物:class Dog(Mammal): passclass Bat(Mammal): passclass Parrot(Bird): passclass Ostrich(Bird): pass
现在,我们要给动物再加上Runnable和Flyable的功能,只需要先定义好Runnable和Flyable的类:
class Runnable(object): def run(self): print('Running...')class Flyable(object): def fly(self): print('Flying...')
对于需要Runnable功能的动物,就多继承一个Runnable,例如Dog:
class Dog(Mammal, Runnable): pass
对于需要Flyable功能的动物,就多继承一个Flyable,例如Bat:
class Bat(Mammal, Flyable): pass
通过多重继承,一个子类就可以同时获得多个父类的所有功能。
MixIn
在设计类的继承关系时,通常,主线都是单一继承下来的,例如,Ostrich继承自Bird。但是,如果需要“混入”额外的功能,通过多重继承就可以实现,比如,让Ostrich除了继承自Bird外,再同时继承Runnable。这种设计通常称之为MixIn。
为了更好地看出继承关系,我们把Runnable和Flyable改为RunnableMixIn和FlyableMixIn。类似的,你还可以定义出肉食动物CarnivorousMixIn和植食动物HerbivoresMixIn,让某个动物同时拥有好几个MixIn:
class Dog(Mammal, RunnableMixIn, CarnivorousMixIn): pass
MixIn的目的就是给一个类增加多个功能,这样,在设计类的时候,我们优先考虑通过多重继承来组合多个MixIn的功能,而不是设计多层次的复杂的继承关系。
Python自带的很多库也使用了MixIn。举个例子,Python自带了TCPServer和UDPServer这两类网络服务,而要同时服务多个用户就必须使用多进程或多线程模型,这两种模型由ForkingMixIn和ThreadingMixIn提供。通过组合,我们就可以创造出合适的服务来。
比如,编写一个多进程模式的TCP服务,定义如下:
class MyTCPServer(TCPServer, ForkingMixIn): pass
编写一个多线程模式的UDP服务,定义如下:
class MyUDPServer(UDPServer, ThreadingMixIn): pass
如果你打算搞一个更先进的协程模型,可以编写一个CoroutineMixIn:
class MyTCPServer(TCPServer, CoroutineMixIn): pass
这样一来,我们不需要复杂而庞大的继承链,只要选择组合不同的类的功能,就可以快速构造出所需的子类。
小结
由于Python允许使用多重继承,因此,MixIn就是一种常见的设计。
只允许单一继承的语言(如Java)不能使用MixIn的设计。
2.定制类
看到类似__slots__这种形如__xxx__的变量或者函数名就要注意,这些在Python中是有特殊用途的。
__slots__我们已经知道怎么用了,__len__()方法我们也知道是为了能让class作用于len()函数。
除此之外,Python的class中还有许多这样有特殊用途的函数,可以帮助我们定制类。
__str__
我们先定义一个Student类,打印一个实例:
>>> class Student(object):... def __init__(self, name):... self.name = name...>>> print(Student('Michael'))<__main__.Student object at 0x109afb190>
打印出一堆<__main__.Student object at 0x109afb190>,不好看。
怎么才能打印得好看呢?只需要定义好__str__()方法,返回一个好看的字符串就可以了:
>>> class Student(object):... def __init__(self, name):... self.name = name... def __str__(self):... return 'Student object (name: %s)' % self.name...>>> print(Student('Michael'))Student object (name: Michael)
这样打印出来的实例,不但好看,而且容易看出实例内部重要的数据。
但是细心的朋友会发现直接敲变量不用print,打印出来的实例还是不好看:
>>> s = Student('Michael')>>> s<__main__.Student object at 0x109afb310>
这是因为直接显示变量调用的不是__str__(),而是__repr__(),两者的区别是__str__()返回用户看到的字符串,而__repr__()返回程序开发者看到的字符串,也就是说,__repr__()是为调试服务的。
解决办法是再定义一个__repr__()。但是通常__str__()和__repr__()代码都是一样的,所以,有个偷懒的写法:
class Student(object): def __init__(self, name): self.name = name def __str__(self): return 'Student object (name=%s)' % self.name __repr__ = __str__
__iter__
如果一个类想被用于for ... in循环,类似list或tuple那样,就必须实现一个__iter__()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的__next__()方法拿到循环的下一个值,直到遇到StopIteration错误时退出循环。
我们以斐波那契数列为例,写一个Fib类,可以作用于for循环:
class Fib(object): def __init__(self): self.a, self.b = 0, 1 # 初始化两个计数器a,b def __iter__(self): return self # 实例本身就是迭代对象,故返回自己 def __next__(self): self.a, self.b = self.b, self.a + self.b # 计算下一个值 if self.a > 100000: # 退出循环的条件 raise StopIteration() return self.a # 返回下一个值
现在,试试把Fib实例作用于for循环:
>>> for n in Fib():... print(n)...11235...4636875025
__getitem__
Fib实例虽然能作用于for循环,看起来和list有点像,但是,把它当成list来使用还是不行,比如,取第5个元素:
>>> Fib()[5]Traceback (most recent call last): File "", line 1, in TypeError: 'Fib' object does not support indexing
要表现得像list那样按照下标取出元素,需要实现__getitem__()方法:
class Fib(object): def __getitem__(self, n): a, b = 1, 1 for x in range(n): a, b = b, a + b return a
现在,就可以按下标访问数列的任意一项了:
>>> f = Fib()>>> f[0]1>>> f[1]1>>> f[2]2>>> f[3]3>>> f[10]89>>> f[100]573147844013817084101
但是list有个神奇的切片方法:
>>> list(range(100))[5:10][5, 6, 7, 8, 9]
对于Fib却报错。原因是__getitem__()传入的参数可能是一个int,也可能是一个切片对象slice,所以要做判断:
class Fib(object): def __getitem__(self, n): if isinstance(n, int): # n是索引 a, b = 1, 1 for x in range(n): a, b = b, a + b return a if isinstance(n, slice): # n是切片 start = n.start stop = n.stop if start is None: start = 0 a, b = 1, 1 L = [] for x in range(stop): if x >= start: L.append(a) a, b = b, a + b return L
现在试试Fib的切片:
>>> f = Fib()>>> f[0:5][1, 1, 2, 3, 5]>>> f[:10][1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
但是没有对step参数作处理:
>>> f[:10:2][1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
也没有对负数作处理,所以,要正确实现一个__getitem__()还是有很多工作要做的。
此外,如果把对象看成dict,__getitem__()的参数也可能是一个可以作key的object,例如str。
与之对应的是__setitem__()方法,把对象视作list或dict来对集合赋值。最后,还有一个__delitem__()方法,用于删除某个元素。
总之,通过上面的方法,我们自己定义的类表现得和Python自带的list、tuple、dict没什么区别,这完全归功于动态语言的“鸭子类型”,不需要强制继承某个接口。
__getattr__
正常情况下,当我们调用类的方法或属性时,如果不存在,就会报错。比如定义Student类:
class Student(object): def __init__(self): self.name = 'Michael'
调用name属性,没问题,但是,调用不存在的score属性,就有问题了:
>>> s = Student()>>> print(s.name)Michael>>> print(s.score)Traceback (most recent call last): ...AttributeError: 'Student' object has no attribute 'score'
错误信息很清楚地告诉我们,没有找到score这个attribute。
要避免这个错误,除了可以加上一个score属性外,Python还有另一个机制,那就是写一个__getattr__()方法,动态返回一个属性。修改如下:
class Student(object): def __init__(self): self.name = 'Michael' def __getattr__(self, attr): if attr=='score': return 99
当调用不存在的属性时,比如score,Python解释器会试图调用__getattr__(self, 'score')来尝试获得属性,这样,我们就有机会返回score的值:
>>> s = Student()>>> s.name'Michael'>>> s.score99
返回函数也是完全可以的:
class Student(object): def __getattr__(self, attr): if attr=='age': return lambda: 25
只是调用方式要变为:
>>> s.age()25
注意,只有在没有找到属性的情况下,才调用__getattr__,已有的属性,比如name,不会在__getattr__中查找。
此外,注意到任意调用如s.abc都会返回None,这是因为我们定义的__getattr__默认返回就是None。要让class只响应特定的几个属性,我们就要按照约定,抛出AttributeError的错误:
class Student(object): def __getattr__(self, attr): if attr=='age': return lambda: 25 raise AttributeError('\'Student\' object has no attribute \'%s\'' % attr)
这实际上可以把一个类的所有属性和方法调用全部动态化处理了,不需要任何特殊手段。
这种完全动态调用的特性有什么实际作用呢?作用就是,可以针对完全动态的情况作调用。
举个例子:
现在很多网站都搞REST API,比如新浪微博、豆瓣啥的,调用API的URL类似:
Chain(object): def __init__(self, path=''): self._path = path def __getattr__(self, path): return Chain('%s/%s' % (self._path, path)) def __str__(self): return self._path __repr__ = __str__
试试:
>>> Chain().status.user.timeline.list'/status/user/timeline/list'
这样,无论API怎么变,SDK都可以根据URL实现完全动态的调用,而且,不随API的增加而改变!
还有些REST API会把参数放到URL中,比如GitHub的API:
GET /users/:user/repos
调用时,需要把:user替换为实际用户名。如果我们能写出这样的链式调用:
Chain().users('michael').repos
就可以非常方便地调用API了。有兴趣的童鞋可以试试写出来。
__call__
一个对象实例可以有自己的属性和方法,当我们调用实例方法时,我们用instance.method()来调用。能不能直接在实例本身上调用呢?在Python中,答案是肯定的。
任何类,只需要定义一个__call__()方法,就可以直接对实例进行调用。请看示例:
class Student(object): def __init__(self, name): self.name = name def __call__(self): print('My name is %s.' % self.name)
调用方式如下:
>>> s = Student('Michael')>>> s() # self参数不要传入My name is Michael.
__call__()还可以定义参数。对实例进行直接调用就好比对一个函数进行调用一样,所以你完全可以把对象看成函数,把函数看成对象,因为这两者之间本来就没啥根本的区别。
如果你把对象看成函数,那么函数本身其实也可以在运行期动态创建出来,因为类的实例都是运行期创建出来的,这么一来,我们就模糊了对象和函数的界限。
那么,怎么判断一个变量是对象还是函数呢?其实,更多的时候,我们需要判断一个对象是否能被调用,能被调用的对象就是一个Callable对象,比如函数和我们上面定义的带有__call__()的类实例:
>>> callable(Student())True>>> callable(max)True>>> callable([1, 2, 3])False>>> callable(None)False>>> callable('str')False
通过callable()函数,我们就可以判断一个对象是否是“可调用”对象。
小结
Python的class允许定义许多定制方法,可以让我们非常方便地生成特定的类。
本节介绍的是最常用的几个定制方法,还有很多可定制的方法,请参考https://docs.python.org/zh-cn/3/reference/datamodel.html#special-method-names
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~