多平台统一管理软件接口,如何实现多平台统一管理软件接口
876
2022-09-02
Python入门之logging模块(python logging 默认输出)
本章目录:
一、logging模块简介
二、logging模块的使用
三、通过JSON或者YMAL文件配置logging模块
=====================================================
一、logging模块简介
Python的logging模块提供了通用的日志系统,可以方便第三方模块或者是应用使用。这个模块提供不同的日志级别,并可以采用不同的方式记录日志,比如文件,HTTP GET/POST,SMTP,Socket等,甚至可以自己实现具体的日志记录方式。
logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级、日志保存路径、日志文件回滚等;相比print,具备如下优点:
可以通过设置不同的日志等级,在release版本中只输出重要信息,而不必显示大量的调试信息;print将所有信息都输出到标准输出中,严重影响开发者从标准输出中查看其它数据;logging则可以由开发者决定将信息输出到什么地方,以及怎么输出;
Logger从来不直接实例化,经常通过logging模块级方法(Module-Level Function) logging.getLogger(name)来获得,如果不给定name,就使用root。名字是以点号分割的命名方式命名的(a.b.c)。对同一个名字的多个调用logging.getLogger()方法会返回同一个logger对象。这种命名方式里面,后面的loggers是前面logger的子logger,自动继承父loggers的log信息,正因为此,没有必要把一个应用的所有logger都配置一遍,只要把顶层的logger配置好了,然后子logger根据需要继承就行了。
logging.Logger对象扮演了三重角色:
1. 它暴露给应用几个方法以便应用可以在运行时写log.
2. Logger对象按照log信息的严重程度或者根据filter对象来决定如何处理log信息(默认的过滤功能).
3. logger还负责把log信息传送给相关的handlers.
logging模块与log4j的机制是一样的,只是具体的实现细节不同。模块提供logger,handler,filter,formatter。
logger:提供日志接口,供应用代码使用。logger最长用的操作有两类:配置和发送日志消息。可以通过logging.getLogger(name)获取logger对象,如果不指定name则返回root对象,多次使用相同的name调用getLogger方法返回同一个logger对象。handler:将日志记录(log record)发送到合适的目的地(destination),比如文件,socket等。一个logger对象可以通过addHandler方法添加0到多个handler,每个handler又可以定义不同日志级别,以实现日志分级过滤显示。filter:提供一种优雅的方式决定一个日志记录是否发送到handler。formatter:指定日志记录输出的具体格式。formatter的构造方法需要两个参数:消息的格式字符串和日期字符串,这两个参数都是可选的。
与log4j类似,logger,handler和日志消息的调用可以有具体的日志级别(Level),只有在日志消息的级别大于logger和handler的级别。
二、logging模块的使用
2.1 基本使用
配置logging基本的设置,然后在控制台输出日志
import logginglogging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')logger = logging.getLogger(__name__) logger.info("Start print log")logger.debug("Do something")logger.warning("Something maybe fail.")logger.info("Finish")
运行时,控制台输出
1 2016-10-09 19:11:19,434 - __main__ - INFO - Start print log2 2016-10-09 19:11:19,434 - __main__ - WARNING - Something maybe fail.3 2016-10-09 19:11:19,434 - __main__ - INFO - Finish
logging中可以选择很多消息级别,如:DEBUG,INFO,WARNING,ERROR,CRITICAL,通过赋予logger或者handler不同的级别,开发者就可以只输出错误信息到特定的记录文件,或者在调试时只记录调试信息。
将logger的级别改为DEBUG,再观察一下输出结果:
logging.basicConfig(level = logging.DEBUG,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
从输出结果可以看到,输出了debug的日志记录
1 2016-10-09 19:12:08,289 - __main__ - INFO - Start print log2 2016-10-09 19:12:08,289 - __main__ - DEBUG - Do something3 2016-10-09 19:12:08,289 - __main__ - WARNING - Something maybe fail.4 2016-10-09 19:12:08,289 - __main__ - INFO - Finish
filename:指定日志文件名; filemode:和file函数意义相同,指定日志文件的打开模式,'w'或者'a'; format:指定输出的格式和内容,format可以输出很多有用的信息, datefmt:指定时间格式,同time.strftime(); level:设置日志级别,默认为logging.WARNNING; stream:指定将日志的输出流,可以指定输出到sys.stderr,sys.stdout或者文件,默认输出到sys.stderr,当stream和filename同时指定时,stream被忽略;
Formatters定义了Logger记录的输出格式,定义了最终log信息的内容格式,应用可以直接实例化Foamatter类。信息格式字符串用%(
属性名称 | 格式 | 说明 |
name | %(name)s | 日志的名称 |
asctime | %(asctime)s | 可读时间,默认格式‘2003-07-08 16:49:45,896’,逗号之后是毫秒 |
filename | %(filename)s | 文件名,pathname的一部分 |
pathname | %(pathname)s | 文件的全路径名称 |
funcName | %(funcName)s | 调用日志多对应的方法名 |
levelname | %(levelname)s | 日志的等级 |
levelno | %(levelno)s | 数字化的日志等级 |
lineno | %(lineno)d | 被记录日志在源码中的行数 |
module | %(module)s | 模块名 |
msecs | %(msecs)d | 时间中的毫秒部分 |
process | %(process)d | 进程的ID |
processName | %(processName)s | 进程的名称 |
thread | %(thread)d | 线程的ID |
threadName | %(threadName)s | 线程的名称 |
relativeCreated | %(relativeCreated)d | 日志被创建的相对时间,以毫秒为单位 |
2.2 将日志写入文件
2.2.1 将日志写入到文件
设置logging,创建一个FileHandler,并对输出消息的格式进行设置,将其添加到logger,然后将日志写入到指定的文件中。
import logginglogger = logging.getLogger(__name__)logger.setLevel(level = logging.INFO)handler = logging.FileHandler("log.txt")handler.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')handler.setFormatter(formatter)logger.addHandler(handler) logger.info("Start print log")logger.debug("Do something")logger.warning("Something maybe fail.")logger.info("Finish")
log.txt中日志数据为:
2018-01-25 13:02:09,905 - __main__ - INFO - Start print log2017-01-25 13:02:09,905 - __main__ - WARNING - Something maybe fail.2017-01-25 13:02:09,905 - __main__ - INFO - Finish
2.2.2 将日志同时输出到屏幕和日志文件
logger中添加StreamHandler,可以将日志输出到屏幕上。
import logginglogger = logging.getLogger(__name__)logger.setLevel(level = logging.INFO)handler = logging.FileHandler("log.txt")handler.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')handler.setFormatter(formatter) console = logging.StreamHandler()console.setLevel(logging.INFO) logger.addHandler(handler)logger.addHandler(console) logger.info("Start print log")logger.debug("Do something")logger.warning("Something maybe fail.")logger.info("Finish")
可以在log.txt文件和控制台中看到:
2018-01-23 15:03:05,075 - __main__ - INFO - Start print log2017-01-23 15:03:05,075 - __main__ - WARNING - Something maybe fail.2017-01-23 15:03:05,075 - __main__ - INFO - Finish
可以发现,logging有一个日志处理的主对象,其他处理方式都是通过addHandler添加进去,logging中包含的handler主要有如下几种:
handler名称:位置;作用 StreamHandler:logging.StreamHandler;日志输出到流,可以是sys.stderr,sys.stdout或者文件FileHandler:logging.FileHandler;日志输出到文件BaseRotatingHandler:logging.handlers.BaseRotatingHandler;基本的日志回滚方式RotatingHandler:logging.handlers.RotatingHandler;日志回滚方式,支持日志文件最大数量和日志文件回滚TimeRotatingHandler:logging.handlers.TimeRotatingHandler;日志回滚方式,在一定时间区域内回滚日志文件SocketHandler:logging.handlers.SocketHandler;远程输出日志到TCP/IP socketsDatagramHandler:logging.handlers.DatagramHandler;远程输出日志到UDP socketsSMTPHandler:logging.handlers.SMTPHandler;远程输出日志到邮件地址SysLogHandler:logging.handlers.SysLogHandler;日志输出到syslogNTEventLogHandler:logging.handlers.NTEventLogHandler;远程输出日志到Windows NT/2000/XP的事件日志MemoryHandler:logging.handlers.MemoryHandler;日志输出到内存中的指定bufferHTTPHandler:logging.handlers.HTTPHandler;通过"GET"或者"POST"远程输出到HTTP服务器
2.2.3 日志回滚
使用RotatingFileHandler,可以实现日志回滚。
可以在工程目录中看到,备份的日志文件
import loggingfrom logging.handlers import RotatingFileHandlerlogger = logging.getLogger(__name__)logger.setLevel(level = logging.INFO)#定义一个RotatingFileHandler,最多备份3个日志文件,每个日志文件最大1KrHandler = RotatingFileHandler("log.txt",maxBytes = 1*1024,backupCount = 3)rHandler.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')rHandler.setFormatter(formatter) console = logging.StreamHandler()console.setLevel(logging.INFO)console.setFormatter(formatter) logger.addHandler(rHandler)logger.addHandler(console) logger.info("Start print log")logger.debug("Do something")logger.warning("Something maybe fail.")logger.info("Finish")
2.3 设置消息的等级
可以设置不同的日志等级,用于控制日志的输出。
#日志等级:使用范围 # FATAL:致命错误 很少使用CRITICAL:特别糟糕的事情,如内存耗尽、磁盘空间为空,一般很少使用ERROR:发生错误时,如IO操作失败或者连接问题WARNING:发生很重要的事件,但是并不是错误时,如用户登录密码错误INFO:处理请求或者状态变化等日常事务DEBUG:调试过程中使用DEBUG等级,如算法中每个循环的中间状态
setLevel 定义处理log的最低等级,内建的级别为DEBUG-->INFO-->WARNING-->ERROR-->CRITICAL;
下图是级别对应的数值,当然你也可以调用系统方法,修改值,但是优先级是没法修改的。
2.4 捕获traceback
Python中的traceback模块被用于跟踪异常返回的信息,可以在logging中记录下traceback
mport logginglogger = logging.getLogger(__name__)logger.setLevel(level = logging.INFO)handler = logging.FileHandler("log.txt")handler.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')handler.setFormatter(formatter) console = logging.StreamHandler()console.setLevel(logging.INFO) logger.addHandler(handler)logger.addHandler(console) logger.info("Start print log")logger.debug("Do something")logger.warning("Something maybe fail.")try: open("sklearn.txt","rb")except (SystemExit,KeyboardInterrupt): raiseexcept Exception: logger.error("Faild to open sklearn.txt from logger.error",exc_info = True) logger.info("Finish")
控制台和日志文件log.txt中输出
2018-01-23 15:04:24,045 - __main__ - INFO - Start print log2018-01-23 15:04:24,045 - __main__ - WARNING - Something maybe fail.2018-01-23 15:04:24,046 - __main__ - ERROR - Faild to open sklearn.txt from logger.errorTraceback (most recent call last):File "F:\PYTHON\xxxx\Logging.py", line 71, in
也可以使用logger.exception(msg,_args),它等价于logger.error(msg,exc_info = True,_args),
将logger.error("Faild to open sklearn.txt from logger.error",exc_info = True)替换为,logger.exception("Failed to open sklearn.txt from logger.exception")
2.5 多模块使用logging
主模块mainModule.py
import loggingimport subModulelogger = logging.getLogger("mainModule")logger.setLevel(level = logging.INFO)handler = logging.FileHandler("log.txt")handler.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')handler.setFormatter(formatter) console = logging.StreamHandler()console.setLevel(logging.INFO)console.setFormatter(formatter) logger.addHandler(handler)logger.addHandler(console) logger.info("creating an instance of subModule.subModuleClass")a = subModule.SubModuleClass()logger.info("calling subModule.subModuleClass.doSomething")a.doSomething()logger.info("done with subModule.subModuleClass.doSomething")logger.info("calling subModule.some_function")subModule.som_function()logger.info("done with subModule.some_function")
子模块mainModule.py
import logging module_logger = logging.getLogger("mainModule.sub")class SubModuleClass(object): def __init__(self): self.logger = logging.getLogger("mainModule.sub.module") self.logger.info("creating an instance in SubModuleClass") def doSomething(self): self.logger.info("do something in SubModule") a = [] a.append(1) self.logger.debug("list a = " + str(a)) self.logger.info("finish something in SubModuleClass") def som_function(): module_logger.info("call function some_function")
执行之后,在控制和日志文件log.txt中输出
2018-01-23 15:05:07,427 - mainModule - INFO - creating an instance of subModule.subModuleClass2018-01-23 15:05:07,427 - mainModule.sub.module - INFO - creating an instance in SubModuleClass2018-01-23 15:05:07,427 - mainModule - INFO - calling subModule.subModuleClass.doSomething2018-01-23 15:05:07,427 - mainModule.sub.module - INFO - do something in SubModule2018-01-23 15:05:07,427 - mainModule.sub.module - INFO - finish something in SubModuleClass2018-01-23 15:05:07,427 - mainModule - INFO - done with subModule.subModuleClass.doSomething2018-01-23 15:05:07,427 - mainModule - INFO - calling subModule.some_function2018-01-23 15:05:07,427 - mainModule.sub - INFO - call function some_function2018-01-23 15:05:07,428 - mainModule - INFO - done with subModule.some_function
说明:
首先在主模块定义了logger'mainModule',并对它进行了配置,就可以在解释器进程里面的其他地方通过getLogger('mainModule')得到的对象都是一样的,不需要重新配置,可以直接使用。定义的该logger的子logger,都可以共享父logger的定义和配置,所谓的父子logger是通过命名来识别,任意以'mainModule'开头的logger都是它的子logger,例如'mainModule.sub'。
实际开发一个application,首先可以通过logging配置文件编写好这个application所对应的配置,可以生成一个根logger,如'PythonAPP',然后在主函数中通过fileConfig加载logging配置,接着在application的其他地方、不同的模块中,可以使用根logger的子logger,如'PythonAPP.Core','PythonAPP.Web'来进行log,而不需要反复的定义和配置各个模块的logger。
三、通过JSON或者YMAL文件配置logging模块
尽管可以在Python代码中配置logging,但是这样并不够灵活,最好的方法是使用一个配置文件来配置。在Python 2.7及以后的版本中,可以从字典中加载logging配置,也就意味着可以通过JSON或者YAML文件加载日志的配置。
3.1 通过JSON文件配置
JSON配置文件
{ "version":1, "disable_existing_loggers":false, "formatters":{ "simple":{ "format":"%(asctime)s - %(name)s - %(levelname)s - %(message)s" } }, "handlers":{ "console":{ "class":"logging.StreamHandler", "level":"DEBUG", "formatter":"simple", "stream":"ext://sys.stdout" }, "info_file_handler":{ "class":"logging.handlers.RotatingFileHandler", "level":"INFO", "formatter":"simple", "filename":"info.log", "maxBytes":"10485760", "backupCount":20, "encoding":"utf8" }, "error_file_handler":{ "class":"logging.handlers.RotatingFileHandler", "level":"ERROR", "formatter":"simple", "filename":"errors.log", "maxBytes":10485760, "backupCount":20, "encoding":"utf8" } }, "loggers":{ "my_module":{ "level":"ERROR", "handlers":["info_file_handler"], "propagate":"no" } }, "root":{ "level":"INFO", "handlers":["console","info_file_handler","error_file_handler"] }}
通过JSON加载配置文件,然后通过logging.dictConfig配置logging
import jsonimport logging.configimport os def setup_logging(default_path = "logging.json",default_level = logging.INFO,env_key = "LOG_CFG"): path = default_path value = os.getenv(env_key,None) if value: path = value if os.path.exists(path): with open(path,"r") as f: config = json.load(f) logging.config.dictConfig(config) else: logging.basicConfig(level = default_level) def func(): logging.info("start func") logging.info("exec func") logging.info("end func") if __name__ == "__main__": setup_logging(default_path = "logging.json") func()
3.2 通过YMAL文件配置
通过YAML文件进行配置,比JSON看起来更加简介明了
version: 1disable_existing_loggers: Falseformatters: simple: format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"handlers: console: class: logging.StreamHandler level: DEBUG formatter: simple stream: ext://sys.stdout info_file_handler: class: logging.handlers.RotatingFileHandler level: INFO formatter: simple filename: info.log maxBytes: 10485760 backupCount: 20 encoding: utf8 error_file_handler: class: logging.handlers.RotatingFileHandler level: ERROR formatter: simple filename: errors.log maxBytes: 10485760 backupCount: 20 encoding: utf8loggers: my_module: level: ERROR handlers: [info_file_handler] propagate: noroot: level: INFO handlers: [console,info_file_handler,error_file_handler]
通过YAML加载配置文件,然后通过logging.dictConfig配置logging
import yamlimport logging.configimport os def setup_logging(default_path = "logging.yaml",default_level = logging.INFO,env_key = "LOG_CFG"): path = default_path value = os.getenv(env_key,None) if value: path = value if os.path.exists(path): with open(path,"r") as f: config = yaml.load(f) logging.config.dictConfig(config) else: logging.basicConfig(level = default_level) def func(): logging.info("start func") logging.info("exec func") logging.info("end func") if __name__ == "__main__": setup_logging(default_path = "logging.yaml") func()
四、Reference
http://wjdadi-gmail-com.iteye.com/blog/1984354
http://python.jobbole.com/84092/
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~