paddlex_gui_win10(飞浆)

网友投稿 301 2022-09-03


paddlex_gui_win10(飞浆)

显卡:GTX 1650

cuda:cuda_10.1.105_418.96_win10

Python:

pip install paddlex -i install paddlepaddle -i install chardet -i predict.py

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\extras\demo_suite>deviceQuery.exe

CUDA Device Query (Runtime API) version (CUDART static linking)Detected 1 CUDA Capable device(s)Device 0: "GeForce GTX 1650" CUDA Driver Version / Runtime Version 11.1 / 10.1 CUDA Capability Major/Minor version number: 7.5 Total amount of global memory: 4096 MBytes (4294967296 bytes) (14) Multiprocessors, ( 64) CUDA Cores/MP: 896 CUDA Cores GPU Max Clock rate: 1590 MHz (1.59 GHz) Memory Clock rate: 6001 Mhz Memory Bus Width: 128-bit L2 Cache Size: 1048576 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: zu bytes Total amount of shared memory per block: zu bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 1024 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: zu bytes Texture alignment: zu bytes Concurrent copy and kernel execution: Yes with 6 copy engine(s) Run time limit on kernels: Yes Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Disabled CUDA Device Driver Mode (TCC or WDDM): WDDM (Windows Display Driver Model) Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: No Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.1, CUDA Runtime Version = 10.1, NumDevs = 1, Device0 = GeForce GTX 1650Result = PASS

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\extras\demo_suite>bandwidthTest.exe

[CUDA Bandwidth Test] - Starting...Running on... Device 0: GeForce GTX 1650 Quick Mode Host to Device Bandwidth, 1 Device(s) PINNED Memory Transfers Transfer Size (Bytes) Bandwidth(MB/s) 33554432 12217.3 Device to Host Bandwidth, 1 Device(s) PINNED Memory Transfers Transfer Size (Bytes) Bandwidth(MB/s) 33554432 12734.4 Device to Device Bandwidth, 1 Device(s) PINNED Memory Transfers Transfer Size (Bytes) Bandwidth(MB/s) 33554432 161388.2Result = PASSNOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:PaddleHub(paddlehub 视频识别)
下一篇:【车辆检测】基于背景差分法实现道路行驶车辆检测附matlab代码
相关文章

 发表评论

暂时没有评论,来抢沙发吧~