python如何排序(python如何排序excle)

网友投稿 296 2022-06-10


排序算法是为了让无序的数据组合变成有序的数据组合。 有序的数据组合最大的优势是在于当你进行数据定位和采用时,会非常方便,那么python如何排序呢?一起来了解下吧:

python如何排序

1)排序基础

简单的升序排序是非常容易的。只需要调用sorted()方法。它返回一个新的list,新的list的元素基于小于运算符(__lt__)来排序。

>>> sorted([5, 2, 3, 1, 4])

[1, 2, 3, 4, 5]

你也可以使用list.sort()方法来排序,此时list本身将被修改。通常此方法不如sorted()方便,但是如果你不需要保留原来的list,此方法将更有效。

>>> a = [5, 2, 3, 1, 4]

>>> a.sort()

>>> a

[1, 2, 3, 4, 5]

另一个不同就是list.sort()方法仅被定义在list中,相反地sorted()方法对所有的可迭代序列都有效。

>>> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})

[1, 2, 3, 4, 5]

2)key参数/函数

从python2.4开始,list.sort()和sorted()函数增加了key参数来指定一个函数,此函数将在每个元素比较前被调用。 例如通过key指定的函数来忽略字符串的大小写:

>>> sorted("This is a test string from Andrew".split(), key=str.lower)

['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']

key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较。这个技术是快速的因为key指定的函数将准确地对每个元素调用。

更广泛的使用情况是用复杂对象的某些值来对复杂对象的序列排序,例如:

>>> student_tuples = [

('john', 'A', 15),

('jane', 'B', 12),

('dave', 'B', 10),

]

>>> sorted(student_tuples, key=lambda student: student[2]) # sort by age

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

同样的技术对拥有命名属性的复杂对象也适用,例如:

>>> class Student:

def __init__(self, name, grade, age):

self.name = name

self.grade = grade

self.age = age

def __repr__(self):

return repr((self.name, self.grade, self.age))

>>> student_objects = [

Student('john', 'A', 15),

Student('jane', 'B', 12),

Student('dave', 'B', 10),

]

>>> sorted(student_objects, key=lambda student: student.age) # sort by age

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

3)Operator 模块函数

上面的key参数的使用非常广泛,因此python提供了一些方便的函数来使得访问方法更加容易和快速。operator模块有itemgetter,attrgetter,从2.6开始还增加了methodcaller方法。使用这些方法,上面的操作将变得更加简洁和快速:

>>> from operator import itemgetter, attrgetter

>>> sorted(student_tuples, key=itemgetter(2))

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

>>> sorted(student_objects, key=attrgetter('age'))

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

operator模块还允许多级的排序,例如,先以grade,然后再以age来排序:

>>> sorted(student_tuples, key=itemgetter(1,2))

[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

>>> sorted(student_objects, key=attrgetter('grade', 'age'))

[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

4)升序和降序

list.sort()和sorted()都接受一个参数reverse(True or False)来表示升序或降序排序。例如对上面的student降序排序如下:

>>> sorted(student_tuples, key=itemgetter(2), reverse=True)

[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

>>> sorted(student_objects, key=attrgetter('age'), reverse=True)

[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

5)排序的稳定性和复杂排序

从python2.2开始,排序被保证为稳定的。意思是说多个元素如果有相同的key,则排序前后他们的先后顺序不变。

>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]

>>> sorted(data, key=itemgetter(0))

[('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]

注意在排序后'blue'的顺序被保持了,即'blue', 1在'blue', 2的前面。

更复杂地你可以构建多个步骤来进行更复杂的排序,例如对student数据先以grade降序排列,然后再以age升序排列。

>>> s = sorted(student_objects, key=attrgetter('age')) # sort on secondary key

>>> sorted(s, key=attrgetter('grade'), reverse=True) # now sort on primary key, descending

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

6)最老土的排序方法-DSU

我们称其为DSU(Decorate-Sort-Undecorate),原因为排序的过程需要下列三步:

第一:对原始的list进行装饰,使得新list的值可以用来控制排序;

第二:对装饰后的list排序;

第三:将装饰删除,将排序后的装饰list重新构建为原来类型的list;

例如,使用DSU方法来对student数据根据grade排序:

>>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)]

>>> decorated.sort()

>>> [student for grade, i, student in decorated] # undecorate

[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

上面的比较能够工作,原因是tuples是可以用来比较,tuples间的比较首先比较tuples的第一个元素,如果第一个相同再比较第二个元素,以此类推。

并不是所有的情况下都需要在以上的tuples中包含索引,但是包含索引可以有以下好处:

第一:排序是稳定的,如果两个元素有相同的key,则他们的原始先后顺序保持不变;

第二:原始的元素不必用来做比较,因为tuples的第一和第二元素用来比较已经是足够了。

此方法被RandalL.在perl中广泛推广后,他的另一个名字为也被称为Schwartzian transform。

对大的list或list的元素计算起来太过复杂的情况下,在python2.4前,DSU很可能是最快的排序方法。但是在2.4之后,上面解释的key函数提供了类似的功能。

7)其他语言普遍使用的排序方法-cmp函数

在python2.4前,sorted()和list.sort()函数没有提供key参数,但是提供了cmp参数来让用户指定比较函数。此方法在其他语言中也普遍存在。

在python3.0中,cmp参数被彻底的移除了,从而简化和统一语言,减少了高级比较和__cmp__方法的冲突。

在python2.x中cmp参数指定的函数用来进行元素间的比较。此函数需要2个参数,然后返回负数表示小于,0表示等于,正数表示大于。例如:

>>> def numeric_compare(x, y):

return x - y

>>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare)

[1, 2, 3, 4, 5]

或者你可以反序排序:

>>> def reverse_numeric(x, y):

return y - x

>>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric)

[5, 4, 3, 2, 1]

当我们将现有的2.x的代码移植到3.x时,需要将cmp函数转化为key函数,以下的wrapper很有帮助:

def cmp_to_key(mycmp):

'Convert a cmp= function into a key= function'

class K(object):

def __init__(self, obj, *args):

self.obj = obj

def __lt__(self, other):

return mycmp(self.obj, other.obj) < 0

def __gt__(self, other):

return mycmp(self.obj, other.obj) > 0

def __eq__(self, other):

return mycmp(self.obj, other.obj) == 0

def __le__(self, other):

return mycmp(self.obj, other.obj) <= 0

def __ge__(self, other):

return mycmp(self.obj, other.obj) >= 0

def __ne__(self, other):

return mycmp(self.obj, other.obj) != 0

return K

当需要将cmp转化为key时,只需要:

>>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric))

[5, 4, 3, 2, 1]

从python2.7,cmp_to_key()函数被增加到了functools模块中。

8)其他注意事项

* 对需要进行区域相关的排序时,可以使用locale.strxfrm()作为key函数,或者使用local.strcoll()作为cmp函数。

* reverse参数任然保持了排序的稳定性,有趣的时,同样的效果可以使用reversed()函数两次来实现:

>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]

>>> assert sorted(data, reverse=True) == list(reversed(sorted(reversed(data))))

* 其实排序在内部是调用元素的__cmp__来进行的,所以我们可以为元素类型增加__cmp__方法使得元素可比较,例如:

>>> Student.__lt__ = lambda self, other: self.age < other.age

>>> sorted(student_objects)

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

* key函数不仅可以访问需要排序元素的内部数据,还可以访问外部的资源,例如,如果学生的成绩是存储在dictionary中的,则可以使用此dictionary来对学生名字的list排序,如下:

>>> students = ['dave', 'john', 'jane']

>>> newgrades = {'john': 'F', 'jane':'A', 'dave': 'C'}

>>> sorted(students, key=newgrades.__getitem__)

['jane', 'dave', 'john']

*当你需要在处理数据的同时进行排序的话,sort(),sorted()或bisect.insort()不是最好的方法。在这种情况下,可以使用heap,red-black tree或treap。

python的dict如何排序

Python的内置dictionary数据类型是无序的,通过key来获取对应的value。可是有时我们需要对dictionary中 的item进行排序输出,可能根据key,也可能根据value来排

#最简单的方法,这个是按照key值排序:

def sortedDictValues1(adict):

items = adict.items()

items.sort()

return [value for key, value in items]

#又一个按照key值排序,貌似比上一个速度要快点

def sortedDictValues2(adict):

keys = adict.keys()

keys.sort()

return [dict[key] for key in keys]

#还是按key值排序,据说更快。。。而且当key为tuple的时候照样适用

def sortedDictValues3(adict):

keys = adict.keys()

keys.sort()

return map(adict.get, keys)

#一行语句搞定:

[(k,di[k]) for k in sorted(di.keys())]

#来一个根据value排序的,先把item的key和value交换位置放入一个list中,再根据list每个元素的第一个值,即原来的value值,排序:

def sort_by_value(d):

items=d.items()

backitems=[[v[1],v[0]] for v in items]

backitems.sort()

return [ backitems[i][1] for i in range(0,len(backitems))]

#还是一行搞定:

[ v for v in sorted(di.values())]

#用lambda表达式来排序,更灵活:

sorted(d.items(), lambda x, y: cmp(x[1], y[1])), 或反序:

sorted(d.items(), lambda x, y: cmp(x[1], y[1]), reverse=True)

#用sorted函数的key= 参数排序:

# 按照key进行排序

print sorted(dict1.items(), key=lambda d: d[0])

# 按照value进行排序

print sorted(dict1.items(), key=lambda d: d[1])

下面给出python内置sorted函数的帮助文档:

sorted(...)

sorted(iterable, cmp=None, key=None, reverse=False) --> new sorted list

看了上面这么多种对dictionary排序的方法,其实它们的核心思想都一样,即把dictionary中的元素分离出来放到一个list中,对list排序,从而间接实现对dictionary的排序。这个“元素”可以是key,value或者item。

按照value排序可以用

sorted(d.items, key=lambda d:d[1])

若版本低不支持sorted

将key,value 以tuple一起放在一个list中

l = []

l.append((akey,avalue))...

用sort()

l.sort(lambda a,b :cmp(a[1],b[1]))(cmp前加“-”表示降序排序)

Python如何排序数据

排序基础

简单的升序排序非常容易:只需调用 sorted() 函数,就得到一个有序的新列表:

>>> sorted([5, 2, 3, 1, 4])

[1, 2, 3, 4, 5]

>>> sorted([5, 2, 3, 1, 4])

[1, 2, 3, 4, 5]

你也可以使用 list.sort() 方法,此方法为就地排序(并且返回 None 来避免混淆)。通常来说这不如 sorted() 方便——但是当你不需要保留原始列表的时候,这种方式略高效一些。

Python

>>> a = [5, 2, 3, 1, 4]

>>> a.sort()

>>> a

[1, 2, 3, 4, 5]

>>> a = [5, 2, 3, 1, 4]

>>> a.sort()

>>> a

[1, 2, 3, 4, 5]

另外一个区别是 list.sort() 方法只可以供列表使用,而 sorted() 函数可以接受任意可迭代对象(iterable)。

Python

>>> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})

[1, 2, 3, 4, 5]

1

2

>>> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})

[1, 2, 3, 4, 5]

Key 函数

list.sort() 和 sorted() 都有一个 key 参数,用于指定在作比较之前,调用何种函数对列表元素进行处理。 For example, here’s a case-insensitive string comparison: 例如,忽略大小写的字符串比较:

>>> sorted("This is a test string from Andrew".split(), key=str.lower)

['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']

>>> sorted("This is a test string from Andrew".split(), key=str.lower)

['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']

key 参数的值应该是一个函数,该函数接收一个参数,并且返回一个 key 为排序时所用。这种方法速度很快,因为每个输入项仅调用一次 key 函数。

一种常见模式是使用对象的下标作为 key 来排序复杂对象。例如:

>>> student_tuples = [

('john', 'A', 15),

('jane', 'B', 12),

('dave', 'B', 10),

]

>>> sorted(student_tuples, key=lambda student: student[2]) # sort by age

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

>>> student_tuples = [

('john', 'A', 15),

('jane', 'B', 12),

('dave', 'B', 10),

]

>>> sorted(student_tuples, key=lambda student: student[2]) # sort by age

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

同样的技巧也可以用在带有命名属性(named attributes)的对象上。

>>> class Student:

def init(self, name, grade, age):

self.name = name

self.grade = grade

self.age = age

def repr(self):

return repr((self.name, self.grade, self.age))

>>> class Student:

def init(self, name, grade, age):

self.name = name

self.grade = grade

self.age = age

def repr(self):

return repr((self.name, self.grade, self.age))

>>> student_objects = [

Student('john', 'A', 15),

Student('jane', 'B', 12),

Student('dave', 'B', 10),

]

>>> sorted(student_objects, key=lambda student: student.age) # sort by age

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

>>> student_objects = [

Student('john', 'A', 15),

Student('jane', 'B', 12),

Student('dave', 'B', 10),

]

>>> sorted(student_objects, key=lambda student: student.age) # sort by age

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

上述的 key 函数模式是非常常见的,所以 Python 提供了一些更简单快速的访问属性的函数。operator 模块有 itemgetter()、attrgetter() 和 methodcaller() 函数。 Using those functions, the above examples become simpler and faster: 使用这些函数,可以使上述的示例更加简洁高效:

>>> from operator import itemgetter, attrgetter

>>> from operator import itemgetter, attrgetter

>>> sorted(student_tuples, key=itemgetter(2))

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

>>> sorted(student_tuples, key=itemgetter(2))

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

>>> sorted(student_objects, key=attrgetter('age'))

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

>>> sorted(student_objects, key=attrgetter('age'))

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

operator 模块方法允许多级排序。例如,可以先按 grade 排序,然后再按 age 排序:

>>> sorted(studenttuples, key=itemgetter(1,2))

[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

>>> sorted(studenttuples, key=itemgetter(1,2))

[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

>>> sorted(student_objects, key=attrgetter('grade', 'age'))

[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

>>> sorted(student_objects, key=attrgetter('grade', 'age'))

[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

list.sort() 和 sorted() 都有布尔型的 reverse 参数,用来指定是否降序。例如,按 age 的降序来对学生数据进行排序:

>>> sorted(student_tuples, key=itemgetter(2), reverse=True)

[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

>>> sorted(student_tuples, key=itemgetter(2), reverse=True)

[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

>>> sorted(student_objects, key=attrgetter('age'), reverse=True)

[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

>>> sorted(student_objects, key=attrgetter('age'), reverse=True)

[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

排序是保证为稳定的,也就是说,当多条记录拥有相同的 key 时,原始的顺序会被保留下来。

>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]

>>> sorted(data, key=itemgetter(0))

[('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]

>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]

>>> sorted(data, key=itemgetter(0))

[('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]

注意到两条 blue 记录保持了原来的顺序, 所以 (‘blue’, 1) 一定在 (‘blue’, 2) 之前。

这个非常棒的属性允许你通过一系列排序来进行复杂排序。例如,学生数据先按 grade 升序,然后按 age 降序,优先排序 age,然后再按 grade 排序:

Python

>>> s = sorted(student_objects, key=attrgetter('age')) # sort on secondary key

>>> sorted(s, key=attrgetter('grade'), reverse=True) # now sort on primary key, descending

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

>>> s = sorted(student_objects, key=attrgetter('age')) # sort on secondary key

>>> sorted(s, key=attrgetter('grade'), reverse=True) # now sort on primary key, descending

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

Python 使用的 Timsort 算法由于可以有效利用数据集中已有的顺序,因而可以高效地进行多级排序。

Python排序的方法

1.list列表排序

只需调用python中的sorted()方法就可以实现升序排序

>>> sorted([5, 2, 3, 1, 4])

[1, 2, 3, 4, 5]

加入一行y.sort(reverse = True)就能实现降序排序

2.冒泡排序

1.比较相邻的元素。如果第一个比第二个大,就交换他们两个。

2.对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。

3.针对所有的元素重复以上的步骤,除了最后一个。

4.持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

def sort(lists, left, right):

if left >= right:

return lists

key = lists[left]

low = left

high = right

while left < right:

while left < right and lists[right] >= key:

right -= 1

lists[left] = lists[right]

while left < right and lists[left] <= key:

left += 1

lists[right] = lists[left]

lists[right] = key

quick_sort(lists, low, left - 1)

quick_sort(lists, left + 1, high)

return lists

if __name__ == '__main__':

lists = [5, 2, 3, 1, 4]

print sort(lists)

3.快速排序

设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用数组的第一个数)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序。值得注意的是,快速排序不是一种稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动。

一趟快速排序的算法是:

1)设置两个变量i、j,排序开始的时候:i=0,j=N-1;

2)以第一个数组元素作为关键数据,赋值给key,即key=A[0];

3)从j开始向前搜索,即由后开始向前搜索(j–),找到第一个小于key的值A[j],将A[j]和A[i]互换;

4)从i开始向后搜索,即由前开始向后搜索(i++),找到第一个大于key的A[i],将A[i]和A[j]互换;

5)重复第3、4步,直到i=j; (3,4步中,没找到符合条件的值,即3中A[j]不小于key,4中A[i]不大于key的时候改变j、i的值,使得j=j-1,i=i+1,直至找到为止。找到符合条件的值,进行交换的时候i, j指针位置不变。另外,i==j这一过程一定正好是i+或j-完成的时候,此时令循环结束)。

def sort(lists, left, right):

if left >= right:

return lists

key = lists[left]

low = left

high = right

while left < right:

while left < right and lists[right] >= key:

right -= 1

lists[left] = lists[right]

while left < right and lists[left] <= key:

left += 1

lists[right] = lists[left]

lists[right] = key

quick_sort(lists, low, left - 1)

quick_sort(lists, left + 1, high)

return lists

if __name__ == '__main__':

lists = [5, 2, 3, 1, 4]

print sort(lists)

4.插入排序

每步将一个待排序的纪录,按其关键码值的大小插入前面已经排序的文件中适当位置上,直到全部插入完为止。

这里写图片描述

def sort(lists):

count = len(lists)

for i in range(0, count):

min = i

for j in range(i + 1, count):

if lists[min] > lists[j]:

min = j

lists[min], lists[i] = lists[i], lists[min]

return lists

if __name__ == '__main__':

lists = [5, 2, 3, 1, 4]

print sort(lists)


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:少儿编程课程什么时候开始好(少儿编程学到什么时候)
下一篇:少儿编程的第一课是什么(教小朋友编程第一课)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~