爱啦爱啦,这三款最频繁使用的 Python 数据探索分析神器真香啊(爱啦就爱啦)

网友投稿 387 2022-09-03


爱啦爱啦,这三款最频繁使用的 Python 数据探索分析神器真香啊(爱啦就爱啦)

大家好,EDA 是数据分析必须的过程,用来查看变量统计特征,可以此为基础尝试做特征工程。

今天我分享3个 EDA 神器,包括安装、代码编写、实操。方便大家学习与比较这三个工具包。 喜欢本文点赞、收藏、关注。

1. Pandas_Profiling

这个属于三个中最轻便、简单的了。它可以快速生成报告,一览变量概况。首先,我们需要安装该软件包。

# 安装Jupyter扩展widget jupyter nbextension enable --py widgetsnbextension# 或者通过conda安装conda env create -n pandas-profilingconda activate pandas-profilingconda install -c conda-forge pandas-profiling# 或者直接从源地址安装pip install pandas as pdimport seaborn as snsmpg = sns.load_dataset('mpg')mpg.head()from pandas_profiling import ProfileReportprofile = ProfileReport(mpg, title='MPG Pandas Profiling Report', explorative = True)profile

使用Pandas Profiling生成了一个快速的报告,具有很好的可视化效果。报告结果直接显示在notebook中,而不是在单独的文件中打开。

总共提供了六个部分:概述、变量、交互、相关性,缺失值和样本。

Pandas profiling的变量部分是完整的,它为每个变量都生成了详细的报告。

从上图可以看出,仅一个变量就有太多信息,比如可以获得描述性信息和分位数信息。

交互

交互部分我们可以获取两个数值变量之间的散点图。

相关性

可以获得两个变量之间的关系信息。

缺失值

可以获取每个变量的缺失值计数信息。

样本

可以显示了数据集中的样本行,用于了解数据。

2. Sweetviz

Sweetviz是另一个Python的开源代码包,仅用一行代码即可生成漂亮的EDA报告。与Pandas Profiling的区别在于它输出的是一个完全独立的HTML应用程序。

使用pip安装该软件包

pip install sweetviz

安装完成后,我们可以使用Sweetviz生成报告,下面尝试一下。

import sweetviz as sv# 可以选择目标特征my_report = sv.analyze(mpg, target_feat ='mpg')my_report.show_html()

从上图可以看到,Sweetviz报告生成的内容与之前的Pandas Profiling类似,但具有不同的UI。

Sweetviz不仅可以查看单变量的分布、统计特性,它还可以设置目标标量,将变量和目标变量进行关联分析。如上面报告最右侧,它获得了所有现有变量的数值关联和类别关联的相关性信息。

Sweetviz的优势不在于单个数据集上的EDA报告,而在于数据集的比较。

可以通过两种方式比较数据集:将其拆分(例如训练和测试数据集),或者使用一些过滤器对总体进行细分。

比如下面这个例子,有USA和NOT-USA两个数据集。

# 设置需要分析的变量my_report = sv.compare_intra(mpg,mpg [“ origin”] ==“ usa”,[“ USA”,“ NOT-USA”],target_feat ='mpg')my_report.show_html()

不需要敲太多的代码就可以让我们快速分析这些变量,这在EDA环节会减少很多工作量,而把时间留给变量的分析和筛选上。

Sweetviz的一些优势在于:

分析有关目标值的数据集的能力两个数据集之间的比较能力

但也有一些缺点:

变量之间没有可视化,例如散点图报告在另一个标签中打开

个人是比较喜欢Sweetviz的。

3. pandasGUI

PandasGUI与前面的两个不同,PandasGUI不会生成报告,而是生成一个GUI(图形用户界面)的数据框,我们可以使用它来更详细地分析我们的Dataframe。

首先,安装PandasGUI。

# pip安装pip install pandasgui# 或者通过源下载pip install git+pandasgui import show# 部署GUI的数据集gui = show(mpg)

在此GUI中,可以做很多事情,比如过滤、统计信息、在变量之间创建图表、以及重塑数据。这些操作可以根据需求拖动选项卡来完成。

比如像下面这个统计信息。

最牛X的就是绘图器功能了。用它进行拖拽操作简直和excel没有啥区别了,操作难度和门槛几乎为零。

还可以通过创建新的数据透视表或者融合数据集来进行重塑。

然后,处理好的数据集可以直接导出成csv。

pandasGUI的一些优势在于:

可以拖拽快速过滤数据快速绘图

缺点在于:

没有完整的统计信息不能生成报告

4. 结论

Pandas Profiling、Sweetviz和PandasGUI都很不错,旨在简化我们的EDA处理。在不同的工作流程中,每个都有自己的优势和适用性,三个工具具体优势如下:

Pandas Profiling 适用于快速生成单个变量的分析。Sweetviz 适用于数据集之间和目标变量之间的分析。PandasGUI适用于具有手动拖放功能的深度分析。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:一学就会,20000字深度讲解 Python 数据可视化神器 Plotly(两学一做感悟100字)
下一篇:mybatis like模糊查询特殊字符报错转义处理方式
相关文章

 发表评论

暂时没有评论,来抢沙发吧~