基于OpenCV与JVM实现矩阵处理图像

网友投稿 323 2022-09-04


基于OpenCV与JVM实现矩阵处理图像

目录图片裁剪图片模糊处理子矩阵生成矩阵从图片子矩阵生成矩阵

submat(int rowStart, int rowEnd, int colStart, int colEnd) 函数的返回值是一个矩阵对象。内容是原图的子矩阵或子区域。

首先我们用imread来读取图片,然后输出矩阵对象本身的一些信息

import org.opencv.core.CvType;

import org.opencv.core.Mat;

import org.opencv.core.Core;

import org.opencv.core.MatOfInt;

import org.opencv.imgcodecs.Imgcodecs;

import origami.Origami;

public class HelloCv {

public static void main(String[] args) throws Exception {

System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

Mat mat = Imgcodecs.imread("./images/test.jpg",Imgcodecs.IMREAD_GRAYSCALE);

System.out.println(mat);

}

}

由于这个矩阵是原始图片,所以它的isSubmat是false。

现在我们使用submat函数的第一种形式,输入参数是每一行和每一列的起始和终止值。

图片裁剪

import org.opencv.core.CvType;

import org.opencv.core.Mat;

import org.opencv.core.Core;

import org.opencv.core.MatOfInt;

import org.opencv.imgcodecs.Imgcodecs;

import origami.Origami;

public class HelloCv {

public static void main(String[] args) throws Exception {

System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

Mat mat = Imgcodecs.imread("C:/HWKJ/ZRQ/OpenCv/matrixcv/images/test.jpg");

System.out.println(mat);

Mat submat = mat.submat(200, 240, 300, 350);

System.out.println(submat);

}

}

这里注意submat里的尺寸,尺寸根据原图的尺寸,超出原图的尺寸会报错,报错如下

然后我们输出裁剪的图片。

那么如何确认你想要截取图片的区域范围呢?也就是说怎么确定这四个参数的填写?我们以下图为例

截取后的图片

另外两种submat方式

Range​(int row,int column)

row:宽开始结束范围

column:高开始结束范围

Mat submat2 = mat.submat(new Range(20,300),new Range(100,500));

Imgcodecs.imwrite("./images/output2.png",submat2);

Rect​(int x, int y,int width, int height)

x:横坐标

y:纵坐标

width :宽

height:高

Mat submat3 = mat.submat(new Rect(0,200,100,100));

//submat3.setTo(new Scalar(255,0,0));//将图片绘制为蓝色

Imgcodecs.imwrite("./images/output3.png",submat3);

打开setTo如下:

Imgcodecs.imwrite("./images/blurtest.png",mat);

完整代码:

import org.opencv.core.CvType;

import org.opencv.core.Scalar;

import org.opencv.core.Mat;

import org.opencv.core.Rect;

import org.opencv.core.Range;

import org.opencv.core.Core;

import org.opencv.core.Size;

import org.opencv.core.MatOfInt;

import org.opencv.imgcodecs.Imgcodecs;

import org.opencv.imgproc.Imgproc;

import origami.Origami;

public class HelloCv {

public static void main(String[] args) throws Exception {

System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

Mat mat = Imgcodecs.imread("C:/HWKJ/ZRQ/OpenCv/matrixcv/images/test.jpg");

System.out.println(mat);

Mat submat = mat.submat(200, 400, 200, 550);

//System.out.println(submat);

Imgcodecs.imwrite("./images/output.png",submat);

Mat submat2 = mat.submat(new Range(20,300),new Range(100,500));

Imgcodecs.imwrite("./images/output2.png",submat2);

Mat submat3 = mat.submat(new Rect(0,200,400,200));

submat3.setTo(new Scalar(255,0,0));

Imgcodecs.imwrite("./images/output3.png",submat3);

//Imgproc.blur(submat,submat,new Size(25.0,25.0));

Imgcodecs.imwrite("./images/blurtest.png",mat);

}

}

图片模糊处理

import org.opencv.core.CvType;

import org.opencv.core.Mat;

import org.opencv.core.Core;

import org.opencv.core.Size;

import org.opencv.core.MatOfInt;

import org.opencv.imgcodecs.Imgcodecs;

import org.opencv.imgproc.Imgproc;

import origami.Origami;

public class HelloCv {

public static void main(String[] args) throws Exception {

System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

Mat mat = Imgcodecs.imread("C:/HWKJ/ZRQ/OpenCv/matrixcv/images/test.jpg");

System.out.println(mat);

Mat submat = mat.submat(200, 400, 200, 550);

//System.out.println(submat);

//Imgcodecs.imwrite("./images/output.png",submat);

Imgproc.blur(submat,submat,new Size(25.0,25.0));

System.out.println("after:"+mat);

Imgcodecs.imwrite("./images/blurtest.png",mat);

}

}

子矩阵生成矩阵

setTo和copyTo是OpenCv中两个非常重要的函数。

setTo可以将一个矩阵中的所有像素设置为指定的颜色

copyTo可以将一个已有的矩阵复制到另一个矩阵之中。

第一个颜色值代表蓝色的深度,第二个值代表绿色的深度,最后一个值代表红色的深度。

//获取红绿蓝

Scalar Red = new Scalar(0,0,255);

Scalar Green = new Scalar(0,255,0);

Scalar Blue = new Scalar(255,0,0);

我们把这些颜色当作RGB的补充色。因此把其他通道设置为最大值255,主通道设置为0。蓝绿色是红色的补充色,所以红色值通道被设为0,而另外两个通道为255;

定义蓝绿色、品红色和黄色

Scalar cyan = new Scalar(255,255,0);

Scalar magena= new Scalar(255,0,255);

Scalar yellow = new Scalar(0,255,255);

下面我们使用setTo将子矩阵设置为给定的Scalar颜色

private void setColors(Mat mat ,boolean comp,int row){

for (int i = 0; i <3 ; i++) {

Mat sub = mat.submat(row*100,row*100+100,i*100,i*100+100);

if(comp){

//RGB

if (i==0){

sub.setTo(Red);

}if (i==1){

sub.setTo(Green);

}if (i==2){

sub.setTo(Blue);

}

}else {

//cmy

if (i==0){

sub.setTo(cyan);

}if (i==1){

sub.setTo(magena);

}if (i==2){

sub.setTo(yellow);

}

}

}

}

接下来,我们创建一个包含三个颜色通道矩阵,并且填充它的第一行和第二行

完整代码:

import org.opencv.core.CvType;

import org.opencv.core.Scalar;

import org.opencv.core.Mat;

import org.opencv.core.Rect;

import org.opencv.core.Range;

import org.opencv.core.Core;

import org.opencv.core.Size;

import org.opencv.core.MatOfInt;

import org.opencv.imgcodecs.Imgcodecs;

import org.opencv.imgproc.Imgproc;

import origami.Origami;

public class HelloCv1 {

public static Scalar Red = new Scalar(0,0,255);

public static Scalar Green = new Scalar(0,255,0);

public static Scalar Blue = new Scalar(255,0,0);

public static Scalar cyan = new Scalar(255,255,0);

public static Scalar magena= new Scalar(255,0,255);

public static Scalar yellow = new Scalar(0,255,255);

public static void main(String[] args) throws Exception {

System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

Mat mat = new Mat(200,300,CvType.CV_8UC3);

setColors(mat,false,1);

setColors(mat,true,0);

Imgcodecs.imwrite("./images/rgbcmy.png",mat);

}

static void setColors(Mat mat ,boolean comp,int row){

for (int i = 0; i <3 ; i++) {

Mat submat = mat.submat(row*100,row*100+100,i*100,i*100+100);

if(comp){

//RGB

if (i==0){

submat.setTo(Red);

}if (i==1){

submat.setTo(Green);

}if (i==2){

submat.setTo(Blue);

}

}else {

//cmy

if (i==0){

submat.setTo(cyan);

}if (i==1){

submat.setTo(magena);

}if (i==2){

submat.setTXsITPfo(yellow);

}

}

}

}

}

从图片子矩阵生成矩阵

首先创建一个大小为200x200的矩阵和子矩阵:一个是主矩阵的上部,一个是主矩阵的下部

int width = 200,height = 200;

Mat mat1 = new Mat(height,width,CvType.CV_8UC3);

Mat top = mat.submat(0,height/2,0,width);

Mat bottom = mat.submat(height/2,height,0,width);

然后加载一个图片以创建另一个小矩阵,并把它的大小调整为上部(或下部)的子矩阵大小。这里会引入Imgproc类中的resize函数。

完整代码:

import org.opencv.core.CvType;

import org.opencv.core.Scalar;

import org.opencv.core.Mat;

import org.opencv.core.Rect;

import org.opencv.core.Range;

import org.opencv.core.Core;

import org.opencv.core.Size;

import org.opencv.core.MatOfInt;

import org.opencv.imgcodecs.ImgcodecsXsITPf;

import org.opencv.imgproc.Imgproc;

import origami.Origami;

public class HelloCv1 {

public static Scalar Red = new Scalar(0,0,255);

public static Scalar Green = new Scalar(0,255,0);

public static Scalar Blue = new Scalar(255,0,0);

public static Scalar cyan = new Scalar(255,255,0);

public static Scalar magena= new Scalar(255,0,255);

public static Scalar yellow = new Scalar(0,255,255);

public static void main(String[] args) throws Exception {

System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

int width = 200,height = 300;

Mat mat1 = new Mat(height,width,CvType.CV_8UC3);

Mat top = mat1.submat(0,height/2,0,width);

Mat bottom = mat1.submat(height/2,height,0,width);

Mat small = Imgcodecs.imread("./images/test.jpg");

Imgproc.resize(small,small,top.size());

small.copyTo(top);

small.copyTo(bottom);

Imgcodecs.imwrite("./images/matofpictures.png",mat1);

}

注意:设置大小的步骤很关键。复制能够成功,是因为小矩阵和子矩阵的大小是完全相同的,因此复制的时候没有出现任何问题

以上就是基于OpenCV与JVM实现矩阵处理图像的详细内容,更多关于OpenCV JVM矩阵处理图像的资料请关注我们其它相关文章!


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:关于扑克牌的一些讨论——《Fluent Python 2》读书笔记(你知道扑克牌吗)
下一篇:注释、变量数据类型与基本输入输出(输入变量和输出变量的定义)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~