Celery 分布式任务队列快速入门(celery中文文档)

网友投稿 679 2022-09-04


Celery 分布式任务队列快速入门(celery中文文档)

本节内容

Celery介绍和基本使用

在项目中如何使用celery

启用多个workers

Celery 定时任务

与django结合

通过django配置celery periodic task

一、Celery介绍和基本使用

Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理, 如果你的业务场景中需要用到异步任务,就可以考虑使用celery, 举几个实例场景中可用的例子:

你想对100台机器执行一条批量命令,可能会花很长时间 ,但你不想让你的程序等着结果返回,而是给你返回 一个任务ID,你过一段时间只需要拿着这个任务id就可以拿到任务执行结果, 在任务执行ing进行时,你可以继续做其它的事情。你想做一个定时任务,比如每天检测一下你们所有客户的资料,如果发现今天 是客户的生日,就给他发个短信祝福

Celery 在执行任务时需要通过一个消息中间件来接收和发送任务消息,以及存储任务结果, 一般使用rabbitMQ or Redis,后面会讲

1.1 Celery有以下优点:

简单:一单熟悉了celery的工作流程后,配置和使用还是比较简单的高可用:当任务执行失败或执行过程中发生连接中断,celery 会自动尝试重新执行任务快速:一个单进程的celery每分钟可处理上百万个任务灵活: 几乎celery的各个组件都可以被扩展及自定制

Celery基本工作流程图

1.2 Celery安装使用

Celery的默认broker是RabbitMQ, 仅需配置一行就可以

broker_url = 'amqp://guest:guest@localhost:5672//'

rabbitMQ 没装的话请装一下,安装看这里  install -U "celery[redis]"

配置

Configuration is easy, just configure the location of your Redis database:

app.conf.broker_url = 'redis://localhost:6379/0'

Where the URL is in the format of:

redis://:password@hostname:port/db_number

all fields after the scheme are optional, and will default to ​​localhost​​ on port 6379, using database 0.

如果想获取每个任务的执行结果,还需要配置一下把任务结果存在哪

If you also want to store the state and return values of tasks in Redis, you should configure these settings:

app.conf.result_backend = 'redis://localhost:6379/0'

1. 3 开始使用Celery啦

安装celery模块

$ pip install celery

创建一个celery application 用来定义你的任务列表

创建一个任务文件就叫tasks.py吧

from celery import Celery app = Celery('tasks', broker='redis://localhost', backend='redis://localhost') @app.taskdef add(x,y): print("running...",x,y) return x+y

启动Celery Worker来开始监听并执行任务

$ celery -A tasks worker --loglevel=info

调用任务

再打开一个终端, 进行命令行模式,调用任务

>>> from tasks import add>>> add.delay(4, 4)

看你的worker终端会显示收到 一个任务,此时你想看任务结果的话,需要在调用 任务时 赋值个变量

>>> result = add.delay(4, 4)

The ​​​ready()​​​ method returns whether the task has finished processing or not:

>>> result.ready()False

You can wait for the result to complete, but this is rarely used since it turns the asynchronous call into a synchronous one:

>>> result.get(timeout=1)8

In case the task raised an exception, ​​​get()​​​ will re-raise the exception, but you can override this by specifying the ​​propagate​​ argument:

>>> result.get(propagate=False)

If the task raised an exception you can also gain access to the original traceback:

>>> result.traceback…二、在项目中如何使用celery

可以把celery配置成一个应用

目录格式如下

proj/__init__.py /celery.py /tasks.py

​​proj/celery.py内容​​

from __future__ import absolute_import, unicode_literalsfrom celery import Celery app = Celery('proj', broker='amqp://', backend='amqp://', include=['proj.tasks']) # Optional configuration, see the application user guide.app.conf.update( result_expires=3600,) if __name__ == '__main__': app.start()

​​proj/tasks.py中的内容​​

from __future__ import absolute_import, unicode_literalsfrom .celery import app@app.taskdef add(x, y): return x + y@app.taskdef mul(x, y): return x * y@app.taskdef xsum(numbers): return sum(numbers)

启动worker

$ celery -A proj worker -l info

输出

-------------- celery@Alexs-MacBook-Pro.local v4.0.2 (latentcall)---- **** -------- * *** * -- Darwin-15.6.0-x86_64-i386-64bit 2017-01-26 21:50:24-- * - **** ---- ** ---------- [config]- ** ---------- .> app: proj:0x103a020f0- ** ---------- .> transport: redis://localhost:6379//- ** ---------- .> results: redis://localhost/- *** --- * --- .> concurrency: 8 (prefork)-- ******* ---- .> task events: OFF (enable -E to monitor tasks in this worker)--- ***** ----- -------------- [queues] .> celery exchange=celery(direct) key=celery

后台启动worker

In the background

In production you’ll want to run the worker in the background, this is described in detail in the ​​daemonization tutorial​​.

The daemonization scripts uses the celery multi command to start one or more workers in the background:

$ celery multi start w1 -A proj -l infocelery multi v4.0.0 (latentcall)> Starting nodes... > w1.halcyon.local: OK

You can restart it too:

$ celery multi restart w1 -A proj -l infocelery multi v4.0.0 (latentcall)> Stopping nodes... > w1.halcyon.local: TERM -> 64024> Waiting for 1 node..... > w1.halcyon.local: OK> Restarting node w1.halcyon.local: OKcelery multi v4.0.0 (latentcall)> Stopping nodes... > w1.halcyon.local: TERM -> 64052

or stop it:

$ celery multi stop w1 -A proj -l info

The ​​stop​​ command is asynchronous so it won’t wait for the worker to shutdown. You’ll probably want to use the ​​stopwait​​ command instead, this ensures all currently executing tasks is completed before exiting:

$ celery multi stopwait w1 -A proj -l info三、Celery 定时任务

celery支持定时任务,设定好任务的执行时间,celery就会定时自动帮你执行, 这个定时任务模块叫celery beat

写一个脚本 叫periodic_task.py

from celery import Celeryfrom celery.schedules import crontab app = Celery() @app.on_after_configure.connectdef setup_periodic_tasks(sender, **kwargs): # Calls test('hello') every 10 seconds. sender.add_periodic_task(10.0, test.s('hello'), name='add every 10') # Calls test('world') every 30 seconds sender.add_periodic_task(30.0, test.s('world'), expires=10) # Executes every Monday morning at 7:30 a.m. sender.add_periodic_task( crontab(hour=7, minute=30, day_of_week=1), test.s('Happy Mondays!'), ) @app.taskdef test(arg): print(arg)

add_periodic_task 会添加一条定时任务

上面是通过调用函数添加定时任务,也可以像写配置文件 一样的形式添加, 下面是每30s执行的任务

app.conf.beat_schedule = { 'add-every-30-seconds': { 'task': 'tasks.add', 'schedule': 30.0, 'args': (16, 16) },}app.conf.timezone = 'UTC'

任务添加好了,需要让celery单独启动一个进程来定时发起这些任务, 注意, 这里是发起任务,不是执行,这个进程只会不断的去检查你的任务计划, 每发现有任务需要执行了,就发起一个任务调用消息,交给celery worker去执行

启动任务调度器 celery beat

$ celery -A periodic_task beat

输出like below

celery beat v4.0.2 (latentcall) is starting.__ - ... __ - _LocalTime -> 2017-02-08 18:39:31Configuration -> . broker -> redis://localhost:6379// . loader -> celery.loaders.app.AppLoader . scheduler -> celery.beat.PersistentScheduler . db -> celerybeat-schedule . logfile -> [stderr]@%WARNING . maxinterval -> 5.00 minutes (300s)

此时还差一步,就是还需要启动一个worker,负责执行celery beat发起的任务

启动celery worker来执行任务

$ celery -A periodic_task worker -------------- celery@Alexs-MacBook-Pro.local v4.0.2 (latentcall)---- **** -------- * *** * -- Darwin-15.6.0-x86_64-i386-64bit 2017-02-08 18:42:08-- * - **** ---- ** ---------- [config]- ** ---------- .> app: tasks:0x104d420b8- ** ---------- .> transport: redis://localhost:6379//- ** ---------- .> results: redis://localhost/- *** --- * --- .> concurrency: 8 (prefork)-- ******* ---- .> task events: OFF (enable -E to monitor tasks in this worker)--- ***** ----- -------------- [queues] .> celery exchange=celery(direct) key=celery

好啦,此时观察worker的输出,是不是每隔一小会,就会执行一次定时任务呢!

注意:Beat needs to store the last run times of the tasks in a local database file (named celerybeat-schedule by default), so it needs access to write in the current directory, or alternatively you can specify a custom location for this file:

$ celery -A periodic_task beat -s /home/celery/var/run/celerybeat-schedule

更复杂的定时配置

上面的定时任务比较简单,只是每多少s执行一个任务,但如果你想要每周一三五的早上8点给你发邮件怎么办呢?哈,其实也简单,用crontab功能,跟linux自带的crontab功能是一样的,可以个性化定制任务执行时间

from celery.schedules import crontab app.conf.beat_schedule = { # Executes every Monday morning at 7:30 a.m. 'add-every-monday-morning': { 'task': 'tasks.add', 'schedule': crontab(hour=7, minute=30, day_of_week=1), 'args': (16, 16), },}

上面的这条意思是每周1的早上7.30执行tasks.add任务

还有更多定时配置方式如下:

Example

Meaning

​crontab()​

Execute every minute.

​crontab(minute=0, hour=0)​

Execute daily at midnight.

​crontab(minute=0, hour='*/3')​

Execute every three hours: midnight, 3am, 6am, 9am, noon, 3pm, 6pm, 9pm.

​crontab(minute=0,​​​​hour='0,3,6,9,12,15,18,21')​

Same as previous.

​crontab(minute='*/15')​

Execute every 15 minutes.

​crontab(day_of_week='sunday')​

Execute every minute (!) at Sundays.

​crontab(minute='*',​​​​hour='*',​​​​day_of_week='sun')​

Same as previous.

​crontab(minute='*/10',​​​​hour='3,17,22',​​​​day_of_week='thu,fri')​

Execute every ten minutes, but only between 3-4 am, 5-6 pm, and 10-11 pm on Thursdays or Fridays.

​crontab(minute=0,hour='*/2,*/3')​

Execute every even hour, and every hour divisible by three. This means: at every hour except: 1am, 5am, 7am, 11am, 1pm, 5pm, 7pm, 11pm

​crontab(minute=0, hour='*/5')​

Execute hour divisible by 5. This means that it is triggered at 3pm, not 5pm (since 3pm equals the 24-hour clock value of “15”, which is divisible by 5).

​crontab(minute=0, hour='*/3,8-17')​

Execute every hour divisible by 3, and every hour during office hours (8am-5pm).

​crontab(0, 0,day_of_month='2')​

Execute on the second day of every month.

​crontab(0, 0,​​​​day_of_month='2-30/3')​

Execute on every even numbered day.

​crontab(0, 0,​​​​day_of_month='1-7,15-21')​

Execute on the first and third weeks of the month.

​crontab(0, 0,day_of_month='11',​​​​month_of_year='5')​

Execute on the eleventh of May every year.

​crontab(0, 0,​​​​month_of_year='*/3')​

Execute on the first month of every quarter.

上面能满足你绝大多数定时任务需求了,甚至还能根据潮起潮落来配置定时任务, 具体看 可以轻松跟celery结合实现异步任务,只需简单配置即可

If you have a modern Django project layout like:

- proj/ - proj/__init__.py - proj/settings.py - proj/urls.py- manage.py

then the recommended way is to create a new proj/proj/celery.py module that defines the Celery instance:

file: proj/proj/celery.py

from __future__ import absolute_import, unicode_literalsimport osfrom celery import Celery # set the default Django settings module for the 'celery' program.os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings') app = Celery('proj') # Using a string here means the worker don't have to serialize# the configuration object to child processes.# - namespace='CELERY' means all celery-related configuration keys# should have a `CELERY_` prefix.app.config_from_object('django.conf:settings', namespace='CELERY') # Load task modules from all registered Django app configs.app.autodiscover_tasks() @app.task(bind=True)def debug_task(self): print('Request: {0!r}'.format(self.request))

Then you need to import this app in your ​​proj/proj/__init__.py​​ module. This ensures that the app is loaded when Django starts so that the ​​@shared_task​​ decorator (mentioned later) will use it:  ​​​proj/proj/__init__.py​​:​​

from __future__ import absolute_import, unicode_literals # This will make sure the app is always imported when# Django starts so that shared_task will use this app.from .celery import app as celery_app __all__ = ['celery_app']

Note that this example project layout is suitable for larger projects, for simple projects you may use a single contained module that defines both the app and tasks, like in the ​​First Steps with Celery​​ tutorial.

​​Let’s break down what happens in the first module, first we import absolute imports from the future, so that our ​​celery.py​​ module won’t clash with the library:​​

from __future__ import absolute_import

Then we set the default ​​​DJANGO_SETTINGS_MODULE​​​ environment variable for the celery command-line program:

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')

You don’t need this line, but it saves you from always passing in the settings module to the ​​celery​​ program. It must always come before creating the app instances, as is what we do next:

app = Celery('proj')

This is our instance of the library.

We also add the Django settings module as a configuration source for Celery. This means that you don’t have to use multiple configuration files, and instead configure Celery directly from the Django settings; but you can also separate them if wanted.

The uppercase name-space means that all Celery configuration options must be specified in uppercase instead of lowercase, and start with ​​CELERY_​​, so for example the ​​task_always_eager`​​ setting becomes ​​CELERY_TASK_ALWAYS_EAGER​​, and the ​​​broker_url​​​ setting becomes ​​CELERY_BROKER_URL​​.

You can pass the object directly here, but using a string is better since then the worker doesn’t have to serialize the object.

app.config_from_object('django.conf:settings', namespace='CELERY')

Next, a common practice for reusable apps is to define all tasks in a separate ​​tasks.py​​module, and Celery does have a way to  auto-discover these modules:

app.autodiscover_tasks()

With the line above Celery will automatically discover tasks from all of your installed apps, following the ​​tasks.py​​ convention:

- app1/ - tasks.py - models.py- app2/ - tasks.py - models.py

Finally, the ​​debug_task​​ example is a task that dumps its own request information. This is using the new ​​bind=True​​ task option introduced in Celery 3.1 to easily refer to the current task instance.

然后在具体的app里的tasks.py里写你的任务

# Create your tasks herefrom __future__ import absolute_import, unicode_literalsfrom celery import shared_task @shared_taskdef add(x, y): return x + y @shared_taskdef mul(x, y): return x * y @shared_taskdef xsum(numbers): return sum(numbers)

在你的django views里调用celery task

from django.shortcuts import render,HttpResponse # Create your views here. from bernard import tasks def task_test(request): res = tasks.add.delay(228,24) print("start running task") print("async task res",res.get() ) return HttpResponse('res %s'%res.get())

五、在django中使用计划任务功能

There’s  the ​​django-celery-beat​​ extension that stores the schedule in the Django database, and presents a convenient admin interface to manage periodic tasks at runtime.

To install and use this extension:

Usepipto install the package:

$ pip install django-celery-beat

Add the

​​django_celery_beat​​

module to

​​INSTALLED_APPS​​

in your Django project’

​​settings.py​​

:

INSTALLED_APPS = ( ..., 'django_celery_beat', )Note that there is no dash in the module name, only underscores.

Apply Django database migrations so that the necessary tables are created:

$ python manage.py migrate

Start thecelery beatservice using thedjangoscheduler:

$ celery -A proj beat -l info -S django

Visit the Django-Admin interface to set up some periodic tasks.

在admin页面里,有3张表

配置完长这样

此时启动你的celery beat 和worker,会发现每隔2分钟,beat会发起一个任务消息让worker执行scp_task任务

注意,经测试,每添加或修改一个任务,celery beat都需要重启一次,要不然新的配置不会被celery beat进程读到


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:mybatis中使用not in与 in的写法说明
下一篇:性能相关异步IO(高频数据 异步性)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~