Python自动化办公--Pandas玩转Excel【一】python处理Excel实现自动化办公教学(含实战)【一】python处理Excel实现自动化办公教学(含实战)

网友投稿 314 2022-09-04


Python自动化办公--Pandas玩转Excel【一】python处理Excel实现自动化办公教学(含实战)【一】python处理Excel实现自动化办公教学(含实战)

相关文章:

python处理Excel实现自动化办公教学(含实战)【一】

python处理Excel实现自动化办公教学(含实战)【二】

python处理Excel实现自动化办公教学(数据筛选、公式操作、单元格拆分合并、冻结窗口、图表绘制等)【三】

python入门之后须掌握的知识点(模块化编程、时间模块)【一】

python入门之后须掌握的知识点(excel文件处理+邮件发送+实战:批量化发工资条)【二】

1.基础温故【Pandas】

1.1 创建文件

import pandas as pddf = pd.DataFrame()df.to_excel('001.xlsx') #可以指定路径#df.to_excel('H:\\Anaconda\\001.xlsx')df = pd.DataFrame({'id':[1,2,3],'name':['a','b','c']})df.to_excel('001-data.xlsx')df = pd.DataFrame({'id':[1,2,3],'name':['a','b','c']})df = df.set_index('id')df.to_excel('001-data-index.xlsx')

第一幅图索引默认在A列,通过set_index把ID设置为索引。

1.2 读取excel中的数据

脏数据处理:第一行错误数据,或者没有数据

import pandas as pdpeople = pd.read_excel('people001.xlsx')print(people.shape)print(people.columns)# 默认打印3行print(people.head())print(people.head(3))# 默认打印5行print(people.tail())#脏数据处理:第一行错误数据,或者没有数据#存在空行会自动识别并跳过,获取列名people = pd.read_excel('people002.xlsx',header=1)print(people.columns)#脏数据处理:第一行没有列名,添加列名people = pd.read_excel('people003.xlsx',header=None)people.columns = ['ID', 'Type', 'Title', 'FirstName', 'MiddleName', 'LastName']people = people.set_index('ID',inplace=True)people.to_excel('output.xlsx')

其中在colums中是把列名和索引区别的,

people = people.set_index('ID',inplace=True)#设置完index后,print(people.columns)#显示'Type', 'Title', 'FirstName', 'MiddleName', 'LastName'

再次读取时:id还是会当作列

这时候在读取的时候需要设置index,即可。

import pandas as pdpeople = pd.read_excel('people001.xlsx',index_col="ID")

1.3 生成列、行、单元格(Series)

Series和python中的字典类似,下面是几种创建方法:

import pandas as pdd = { 'x':100, 'y':200, 'z':300,}print(d.values())print(d.keys())s1 = pd.Series(d)print(s1.index)L1 = [100,200,300]L2 = ['x','y','z']s2 = pd.Series(L1,index=L2)print(s2.index)s3 = pd.Series([100,200,300],index=['x','y','z'])print(s3.index)

创建一个简单的列表:行列不同形式添加。

index是默认对齐的方式,如果不相同会用NaN填充。

1.4 自动填充功能【数据区域读取填充数字】

1.4.1 数值填充

原始数据:只有name(书名)进行填充数据

数据区域不是定格,无法自动识别

import pandas as pdbooks = pd.read_excel('books.xlsx',skiprows=4,usecols='C:F',index_col=None)#usecols='C,D,E,F',填充完再设置index_colprint(books)#NaN填充的dtype是float64

import pandas as pdbooks = pd.read_excel('books.xlsx',skiprows=4,usecols='C:F',index_col=None)for i in books.index: books["ID"].at[i]=i+1print(books)

为了显示为整型,先把类型设置为str

import pandas as pdbooks = pd.read_excel('books.xlsx',skiprows=4,usecols='C:F',index_col=None,dtype={"ID":str,"InStore":str,"Date":str})for i in books.index: books["ID"].at[i]=i+1print(books)

import pandas as pdbooks = pd.read_excel('books.xlsx',skiprows=4,usecols='C:F',index_col=None,dtype={"ID":str,"InStore":str,"Date":str})for i in books.index: books["ID"].at[i]=i+1 books["InStroe"].at[i]="yes" if i%2==0 else "no"print(books)

import pandas as pdfrom datetime import date, timedeltabooks = pd.read_excel('books.xlsx',skiprows=4,usecols='C:F',index_col=None,dtype={"ID":str,"InStore":str,"Date":str})start=date(2018,1,1)for i in books.index: books["ID"].at[i]=i+1 books["InStroe"].at[i]="yes" if i%2==0 else "no" books["Date"].at[i]=start+timedelta(days=i) #没有年月 month year; 时分秒有 #books["Date"].at[i]=date(start.year+i,start.month,start.day)print(books)

月份相加需要计算一下,定义个子函数

import pandas as pdfrom datetime import date, timedeltadef add_month[d, md): yd=md/12 m=d.month+md%12 if m!= 12: yd+=m/12 m=m%12 return date(d.year + yd,m, d.day)books = pd.read_excel('books.xlsx',skiprows=4,usecols='C:F',index_col=None,dtype={"ID":str,"InStore":str,"Date":str})start=date(2018,1,1)for i in books.index: books["ID"].at[i]=i+1 books["InStroe"].at[i]="yes" if i%2==0 else "no" books["Date"].at[i]=start+timedelta(days=i) #没有年月 month year; 时分秒有 #books["Date"].at[i]=date(start.year+i,start.month,start.day) #books["Date"].at[i]=add_month(start,i)#print(books)books.set_index("ID",inplace=True)books.to_excel("output/xlsx")

还有一种写法不改series直接改单元格写法如下:

for i in books.index: booksat[i,"ID"]]=i+1 books.at[i,"InStroe"]="yes" if i%2==0 else "no" books.at[i,"Date"]=start+timedelta(days=i) #没有年月 month year; 时分秒有 #books["Date"].at[i]=date(start.year+i,start.month,start.day) #books["Date"].at[i]=add_month(start,i)#print(books)

1.4.2 计算填充(列操作)

列相乘,操作符重载【不用循环计算更方便】

循环:【不从头到尾计算,部分区域计算采用单元格计算】

价格加2  使用apply

lambda:

1.5 排序,多重排序

ascending默认从小到大排序:【true 从大到小   false从小到大】

1.6 数据筛选、过滤

找出年龄【18,30】分数【60,90】之间的

import pandas as pddef validate_age(a): return 18 <= a <= 30 #pandas特有写法def level_b(s): return 60 <= s < 90students = pd.read_excel('Students.xlsx', index_col='ID')#id作为indexstudents = students.loc[students['Age'].apply(validate_age)].loc[students.Score.apply(level_b)] # 两种语法students = students.loc[students.Age.apply(validate_age)].loc[students.Score.apply(level_b)] # 两种语法print(students)

loc与iloc功能介绍:数据切片。通过索引来提取数据集中相应的行数据or列数据(可以是多行or多列)总结不同:  1. loc函数通过调用index名称的具体值来取数据 2. iloc函数通过行序号来取数据 3.取多行数据时iloc不包含末尾 4.对数据进行筛选使用loc函数,当使用loc函数时, 如果index不具有特定意义,而且重复,那么提取的数据需要进一步处理,可用.reset index()函数重置index相同: . 5.【】中无逗号时,默认取行

筛选出来的结果:

Name Age ScoreID4 Student_004 27 738 Student_008 21 619 Student_009 18 8519 Student_019 19 86

换一种写法:lambda

import pandas as pd# def validate_age(a):# return 18 <= a <= 30# def level_b(s):# return 60 <= s < 90students = pd.read_excel('Students.xlsx', index_col='ID')students = students.loc[students['Age'].apply( lambda a:18 <= a <= 30)] .loc[students.Score.apply(lambda s:60 <= s < 90)] # 两种语法print(students)

2.数据可视化

2.1 柱状图

Field

Number

Agriculture

12,318

Business and Management

200,312

Education

19,483

Engineering

216,932

Fine and Applied Arts

59,736

Health Professions

33,947

Humanities

17,664

Mathematics and Computer Sciences

141,651

Other/Unspecified Subject Areas

185,107

Physical and Life Sciences

75,385

Social Sciences

81,304

import pandas as pdimport matplotlib.pyplot as pltstudents = pd.read_excel('Students1.xlsx')students.sort_values(by='Number', inplace=True, ascending=False)students.index = range(0, len(students))print(students)plt.bar(students['Field'], students['Number'], color='orange', width=0.7)#plt.xticks(students['Field'], rotation='90') #rotation旋转plt.title('International Student by Field', fontsize=16)plt.xlabel('Field')plt.ylabel('Number')plt.tight_layout() #j紧凑型,避免下标显示不全plt.show()

pandas中inplace参数在很多函数中都会有,它的作用是:是否在原对象基础上进行修改

inplace = True:不创建新的对象,直接对原始对象进行修改; inplace = False:对数据进行修改,创建并返回新的对象承载其修改结果。

默认是False,即创建新的对象进行修改,原对象不变, 和深复制和浅复制有些类似。

或者直接用pandas自带的:

import pandas as pdimport matplotlib.pyplot as pltstudents = pd.read_excel('C:/Temp/Students.xlsx')students.sort_values('Number', inplace=True, ascending=False)print(students)students.plot.bar(x='Field', y='Number', color='blue', title='International Students by Field')plt.tight_layout()plt.show()

2.2 分组柱图深度优化(比较图)

Field

2016

2017

Agriculture

12,318

12,602

Business and Management

200,312

200,754

Communications and Journalism

21,160

21,913

Education

19,483

17,993

Engineering

216,932

230,711

Fine and Applied Arts

59,736

61,506

Humanities

17,664

17,561

Intensive English

40,877

30,309

Legal Studies and Law Enforcement

15,077

15,306

Math and Computer Science

141,651

167,180

Physical and Life Sciences

75,385

76,838

Social Sciences

81,304

83,046

Other Fields of Study

81,318

87,577

Undeclared

26,675

21,131

import numpy as npimport pandas as pdimport matplotlib.pyplot as pltstudents = pd.read_excel('Students2.xlsx')students.sort_values(by='2017', inplace=True, ascending=False)print(students)students.plot.bar('Field', ['2016', '2017'], color=['orange', 'Red'])plt.title('International Students by Field', fontsize=16,fontweight="bold")plt.xlabel('Field', fontweight='bold')plt.ylabel('Number', fontweight='bold')plt.tight_layout()ax = plt.gca() #坐标轴移动修改ax.set_xticklabels(students['Field'], rotation=40, ha='right') #默认中心旋转plt.gcf().subplots_adjust(left=0.2, bottom=0.42) #画布大小调整plt.show()

推荐第一个

import numpy as npimport pandas as pdimport matplotlib.pyplot as pltstudents = pd.read_excel('Students2.xlsx')students.sort_values(by='2017', inplace=True, ascending=False)students.index = range(0, len(students))print(students)bar_width = 0.7x_pos = np.arange(len(students) * 2, step=2)plt.bar(x_pos, students['2016'], color='green', width=bar_width)plt.bar(x_pos + bar_width, students['2017'], color='blue', width=bar_width)plt.legend()plt.xticks(x_pos + bar_width / 2, students['Field'], rotation='90')plt.title('International Student by Field', fontsize=16)plt.xlabel('Field')plt.ylabel('Number')plt.tight_layout()plt.show()

2.3 叠加柱状图

用户总量从大到小排序:

import pandas as pdimport matplotlib.pyplot as pltusers = pd.read_excel('Users.xlsx')users['Total'] = users['Oct'] + users['Nov'] + users['Dec']users.sort_values(by='Total', inplace=True, ascending=False)print(users)users.plot.bar(x='Name', y=['Oct', 'Nov', 'Dec'], stacked=True)# users.plot.barh(x='Name', y=['Oct', 'Nov', 'Dec'], stacked=True)#水平柱状图堆积plt.tight_layout()plt.show()

users.sort_values(by='Total', inplace=True, ascending=Ture)users.plot.barh(x='Name', y=['Oct', 'Nov', 'Dec'], stacked=True)#水平柱状图堆积

2.4 饼图

其中2016 2017是字符串,避免pandas误认为数字。

import pandas as pdimport matplotlib.pyplot as pltstudents = pd.read_excel('Students3.xlsx', index_col='From')print(students)# counterclock顺逆时针,startangle开始点确认students['2017'].plot.pie(fontsize=8, counterclock=False, startangle=-270)plt.title('Source of International Students', fontsize=16, fontweight='bold')plt.ylabel('2017', fontsize=12, fontweight='bold')plt.show()

2.5 折现趋势图,叠加区域图

import pandas as pdimport matplotlib.pyplot as pltweeks = pd.read_excel('Orders.xlsx', index_col='Week')print(weeks)weeks.plot(y=['Accessories', 'Bikes', 'Clothing', 'Components'])weeks.plot.area(y=['Accessories', 'Bikes', 'Clothing', 'Components'])plt.title('Sales Trends', fontsize=16, fontweight='bold')plt.xticks(weeks.index, fontsize=8)plt.show()

2.6 散点图直方图密度图

import pandas as pdimport matplotlib.pyplot as pltpd.options.display.max_columns = 999#所有列都会显示homes = pd.read_excel('home_data.xlsx')# print(homes.head())print(homes.corr())#相关性homes.plot.scatter(x='sqft_living', y='price')plt.figure()homes.sqft_living.plot.kde() #密度图plt.figure()homes.sqft_living.plot.hist(bins=100) #区间设置plt.xticks(range(0, max(homes.sqft_living), 500), fontsize=8, rotation=90) #面积# homes.price.plot.hist(bins=200)# plt.xticks(range(0, max(homes.price), 100000), fontsize=8, rotation=90) #房价plt.show()

密度图:

相关性:corr()

id price bedrooms bathrooms sqft_living \id 1.000000 -0.016762 0.001286 0.005160 -0.012258price -0.016762 1.000000 0.308350 0.525138 0.702035bedrooms 0.001286 0.308350 1.000000 0.515884 0.576671bathrooms 0.005160 0.525138 0.515884 1.000000 0.754665sqft_living -0.012258 0.702035 0.576671 0.754665 1.000000sqft_basement -0.005151 0.323816 0.303093 0.283770 0.435043sqft_lot -0.132109 0.089661 0.031703 0.087740 0.172826floors 0.018525 0.256794 0.175429 0.500653 0.353949yr_built 0.021380 0.054012 0.154178 0.506019 0.318049 sqft_basement sqft_lot floors yr_builtid -0.005151 -0.132109 0.018525 0.021380price 0.323816 0.089661 0.256794 0.054012bedrooms 0.303093 0.031703 0.175429 0.154178bathrooms 0.283770 0.087740 0.500653 0.506019sqft_living 0.435043 0.172826 0.353949 0.318049sqft_basement 1.000000 0.015286 -0.245705 -0.133124sqft_lot 0.015286 1.000000 -0.005201 0.053080floors -0.245705 -0.005201 1.000000 0.489319yr_built -0.133124 0.053080 0.489319 1.000000


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:【原创】Python 网易易盾滑块验证
下一篇:Mybatis中resultMap的Colum和property属性详解
相关文章

 发表评论

暂时没有评论,来抢沙发吧~