Gointerface接口声明实现及作用详解
256
2022-09-05
【SVM分类】基于遗传算法优化支持向量机实现葡萄酒分类附matlab代码
1 简介
支持向量机是一种建立在统计学习理论上的机 器学习方法, 它追求结构化风险最小而不是经验风 险最小, 具有很强的推广能力. SVM 是从线性可分 的二分类问题发展而来的, 其基本思想是寻找两类 样本的最优分类面, 使得两类样本的分类间隔 ( margin) 最大. 以图 1 所示为例. 图中: 实心点和空 心点分别代表两类样本; H 为分类线, H1 和 H2 分 别为各类中离分类线最近的样本且平行于分类线的 直线, 它们之间的距离称为分类间隔. 所谓最优分类 线就是要求分类线不但能将两类正确分开, 而且使 分类间隔最大.
2 部分代码
%% SVM神经网络中的参数优化---如何更好的提升分类器的性能 %% 清空环境变量close all;clear;clc;format compact;%% 数据提取% 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量load chapter13_wine.mat;% 画出测试数据的box可视化图figure;boxplot(wine,'orientation','horizontal','labels',categories);title('wine数据的box可视化图','FontSize',12);xlabel('属性值','FontSize',12);grid on;% 画出测试数据的分维可视化图figuresubplot(3,5,1);hold onfor run = 1:178 plot(run,wine_labels(run),'*');endxlabel('样本','FontSize',10);ylabel('类别标签','FontSize',10);title('class','FontSize',10);for run = 2:14 subplot(3,5,run); hold on; str = ['attrib ',num2str(run-1)]; for i = 1:178 plot(i,wine(i,run-1),'*'); end xlabel('样本','FontSize',10); ylabel('属性值','FontSize',10); title(str,'FontSize',10);end% 选定训练集和测试集% 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)];% 相应的训练集的标签也要分离出来train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)];% 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)];% 相应的测试集的标签也要分离出来test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)];%% 数据预处理% 数据预处理,将训练集和测试集归一化到[0,1]区间[mtrain,ntrain] = size(train_wine);[mtest,ntest] = size(test_wine);dataset = [train_wine;test_wine];% mapminmax为MATLAB自带的归一化函数[dataset_scale,ps] = mapminmax(dataset',0,1);dataset_scale = dataset_scale';% 打印测试集分类准确率total = length(test_wine_labels);right = sum(predict_label == test_wine_labels);disp('打印测试集分类准确率');str = sprintf( 'Accuracy = %g%% (%d/%d)',accuracy(1),right,total);disp(str);%% 结果分析% 测试集的实际分类和预测分类图figure;hold on;plot(test_wine_labels,'o');plot(predict_label,'r*');xlabel('测试集样本','FontSize',12);ylabel('类别标签','FontSize',12);legend('实际测试集分类','预测测试集分类');title('测试集的实际分类和预测分类图','FontSize',12);grid on;snapnow;
3 仿真结果
4 参考文献
[1]陈果. 基于遗传算法的支持向量机分类器模型参数优化[J]. 机械科学与技术, 2007, 26(3):347-350.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~