【人脸识别】基于FISHER线性判决实现人脸识别含Matlab源码(人脸识别的matlab仿真)

网友投稿 213 2022-09-05


【人脸识别】基于FISHER线性判决实现人脸识别含Matlab源码(人脸识别的matlab仿真)

1 简介

人脸识别是生物特征鉴别技术的一个主要方向,与其他生物特征相比,人脸识别具有主动性,非侵犯性和用户友好等许多优点,多年来一直受到许多研究者的关注.从最初的基于几何的方法到基于统计等复杂特征的方法,人脸识别已经发展了很多算法.目前基于统计特征的线性方法在人脸识别中发展的比较成熟,但是由于人脸识别涉及光照,表情,姿态等问题,线性方法在实际应用中表现的远远不够.因此,将线性方法拓展到非线性领域以提高识别率是一个亟待解决的问题.

2 部分代码

function varargout = faceCore(varargin)% FACECORE M-file for faceCore.fig% FACECORE, by itself, creates a new FACECORE or raises the existing% singleton*.%% H = FACECORE returns the handle to a new FACECORE or the handle to% the existing singleton*.%% FACECORE('CALLBACK',hObject,eventData,handles,...) calls the local% function named CALLBACK in FACECORE.M with the given input arguments.%% FACECORE('Property','Value',...) creates a new FACECORE or raises the% existing singleton*. Starting from the left, property value pairs are% applied to the GUI before faceCore_OpeningFunction gets called. An% unrecognized property name or invalid value makes property application% stop. All inputs are passed to faceCore_OpeningFcn via varargin.%% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one% instance to run (singleton)".%% See also: GUIDE, GUIDATA, GUIHANDLES% Copyright 2002-2003 The MathWorks, Inc.% Edit the above text to modify the response to help faceCore% Last Modified by GUIDE v2.5 28-May-2009 10:21:26% Begin initialization code - DO NOT EDITgui_Singleton = 1;gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @faceCore_OpeningFcn, ... 'gui_OutputFcn', @faceCore_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []);if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1});endif nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});else gui_mainfcn(gui_State, varargin{:});end% End initialization code - DO NOT EDIT% --- Executes just before faceCore is made visible.function faceCore_OpeningFcn(hObject, eventdata, handles, varargin)% This function has no output args, see OutputFcn.% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% varargin command line arguments to faceCore (see VARARGIN)% Choose default command line output for faceCorehandles.output = hObject;% Update handles structureguidata(hObject, handles);% UIWAIT makes faceCore wait for user response (see UIRESUME)% uiwait(handles.figure1);% --- Outputs from this function are returned to the command line.function varargout = faceCore_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT);% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Get default command line output from handles structurevarargout{1} = handles.output;% --- Executes on button press in pushbutton1.function pushbutton1_Callback(hObject, eventdata, handles)% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)global TrainDatabasePath ;TrainDatabasePath = uigetdir(strcat(matlabroot,'\work'), '训练库路径选择...' );% --- Executes on button press in pushbutton2.function pushbutton2_Callback(hObject, eventdata, handles)% hObject handle to pushbutton2 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)global TestDatabasePath;TestDatabasePath = uigetdir(strcat(matlabroot,'\work'), '测试库路径选择...');% --- Executes on button press in pushbutton3.%function pushbutton3_Callback(hObject, eventdata, handles)% hObject handle to pushbutton3 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)%[filename,pathname]=uigetfile({'*.jpg';'*.bmp'},'');%str=[pathname filename];%im=imread(str);%axes(handles.axes1);%imshow(im);% --- Executes on button press in pushbutton4.function pushbutton4_Callback(hObject, eventdata, handles)% hObject handle to pushbutton4 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)global TrainDatabasePath ;global TestDatabasePath;global T;T = CreateDatabase(TrainDatabasePath);%[m V_PCA V_Fisher ProjectedImages_Fisher] = FisherfaceCore(T);% --- Executes on button press in pushbutton5.function pushbutton9_Callback(hObject, eventdata, handles)% hObject handle to pushbutton5 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)global im;[filename,pathname]=uigetfile({'*.jpg';'*.bmp'},'选择测试图片...');str=[pathname filename];im=imread(str);axes(handles.axes1);imshow(im);% --- Executes on button press in pushbutton6.function pushbutton6_Callback(hObject, eventdata, handles)% hObject handle to pushbutton6 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)%T = CreateDatabase(TrainDatabasePath);global T;global im;global TrainDatabasePath ;[m V_PCA V_Fisher ProjectedImages_Fisher] = FisherfaceCore(T);OutputName = Recognition(im, m, V_PCA, V_Fisher, ProjectedImages_Fisher);SelectedImage = strcat(TrainDatabasePath,'\',OutputName);SelectedImage = imread(SelectedImage);axes(handles.axes2);imshow(SelectedImage);%title('Equivalent Image');% --- Executes on button press in pushbutton7.function pushbutton7_Callback(hObject, eventdata, handles)% hObject handle to pushbutton7 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)clear all;clcclose(gcf);

3 仿真结果

4 参考文献

[1]王平. 基于非线性Fisher判决的人脸识别方法研究[D]. 中国海洋大学.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:【SVM分类】基于粒子群算法优化支持向量机实现葡萄酒数据分类附matlab代码
下一篇:【樽海鞘算法】基于集成随机惯性权重和差分变异操作的樽海鞘群算法(ISSA)求解单目标问题附matlab代码
相关文章

 发表评论

暂时没有评论,来抢沙发吧~