【lssvm预测】基于灰狼算法优化LSSVM数据回归预测含Matlab源码

网友投稿 238 2022-09-05


【lssvm预测】基于灰狼算法优化LSSVM数据回归预测含Matlab源码

1 简介

随着现代智能交通系统的发展,准确的交通流量预测,尤其是短时交通流量的预测,对实时交通控制的重要性日益凸显.为了解决交通流量数据强非线性对预测精度的影响,本文基于最小二乘支持向量机研究交通流量预测方法.提出了一种灰狼优化算法优化LSSVM的惩罚因子γ和核函数参数σ,实现对短时交通流的精准预测.实验结果表明,GWO优化LSSVM的泛化性能和鲁棒性优于其他同类方法,可以实现交通流的精准预测.

2 部分代码

% Grey Wolf Optimizerfunction [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)% initialize alpha, beta, and delta_posAlpha_pos=zeros(1,dim);Alpha_score=inf; %change this to -inf for maximization problemsBeta_pos=zeros(1,dim);Beta_score=inf; %change this to -inf for maximization problemsDelta_pos=zeros(1,dim);Delta_score=inf; %change this to -inf for maximization problems%Initialize the positions of search agentsPositions=initialization(SearchAgents_no,dim,ub,lb);Convergence_curve=zeros(1,Max_iter);l=0;% Loop counter% Main loopwhile lub; Flag4lb=Positions(i,:)Alpha_score && fitnessAlpha_score && fitness>Beta_score && fitness

3 仿真结果

4 参考文献

[1]伍轶鸣, 孙博文, 成荣红,等. 基于灰狼算法的LSSVM模型预测凝析气藏露点压力研究[J]. 西安石油大学学报:自然科学版, 2020, 35(2):7.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:【跳蛛优化算法】基于跳蛛优化算法求解单目标优化问题附matlab代码
下一篇:Java设计模式之职责链模式详解
相关文章

 发表评论

暂时没有评论,来抢沙发吧~