多平台统一管理软件接口,如何实现多平台统一管理软件接口
459
2022-09-06
简单实用,聊聊我常用的 4 款 Pandas 自动数据分析神器
我们做数据分析,在第一次拿到数据集的时候,一般会用统计学或可视化方法来了解原始数据。 了解列数、行数、取值分布、缺失值、列之间的相关关系等等,这个过程叫做 EDA(Exploratory Data Analysis,探索性数据分析)。
现在做EDA一行行写代码的工作方式很少见,一方面效率低,另外一方面自己写的代码未必有现成的方法更有效。
目前市面上有很多EDA工具可以自动产出基础的统计数据和图表。今天我就跟大家分享 4 款常用的EDA工具,最后一款绝了,完全是抛弃代码的节奏。
有人会问,为嘛你啥都知道?方法其实很简单,独学而无友,则孤陋而寡闻,交流的多了,看的多了,自然知道的多。如果你想加入,文末可以入群。
正式介绍这些工具之前,先来加载数据集
import numpy as npimport pandas as pdiris = pd.read_csv('iris.csv')iris
iris是下面用到的数据集,是一个150行 * 4列的 DataFrame。
1. PandasGUI
PandasGUI提供数据预览、筛选、统计、多种图表展示以及数据转换。
# 安装# pip install pandasguifrom pandasgui import showshow(iris)
PandasGUI操作界面
PandasGUI更侧重数据展示,提供了10多种图表,通过可视的方式配置。
但数据统计做的比较简单,没有提供缺失值、相关系数等指标,数据转换部分也只开放了一小部分接口。
2. Pandas Profiling
Pandas Profiling 提供了整体数据概况、每列的详情、列之间的关图、列之间的相关系数。
# 安装:# pip install -U pandas-profiling# jupyter nbextension enable --py widgetsnbextensionfrom pandas_profiling import ProfileReportprofile = ProfileReport(iris, title='iris Pandas Profiling Report', explorative=True)profile
Pandas Profiling操作界面
每列的详情包括:缺失值统计、去重计数、最值、平均值等统计指标和取值分布的柱状图。
列之间的相关系数支持Spearman、Pearson、Kendall 和 Phik 4 种相关系数算法。
与 PandasGUI 相反,Pandas Profiling没有丰富的图表,但提供了非常多的统计指标以及相关系数。
3. Sweetviz
Sweetviz与Pandas Profiling类似,提供了每列详细的统计指标、取值分布、缺失值统计以及列之间的相关系数。
# 安装# pip install sweetvizimport sweetviz as svsv_report = sv.analyze(iris)sv_report.show_html()
Sweetviz操作界面
Sweetviz还有有一个非常好的特性是支持不同数据集的对比,如:训练数据集和测试数据集的对比。
Sweetviz数据集对比
蓝色和橙色代表不同的数据集,通过对比可以清晰发现数据集之前的差异。
4. dtale
最后重磅介绍dtale,它不仅提供丰富图表展示数据,还提供了很多交互式的接口,对数据进行操作、转换。
dtale操作界面
dtale的功能主要分为三部分:数据操作、数据可视化、高亮显示。
4.1 数据操作(Actions)
dtale将pandas的函数包装成可视化接口,可以让我们通过图形界面方式来操作数据。
# pip install dtaleimport dtaled = dtale.show(iris)d.open_browser()
Actions
右半部分图是左边图的中文翻译,用的是 Chrome 自动翻译,有些不是很准确。
举一个数据操作的例子。
Summarize Data
上图是Actions菜单中Summarize Data的功能,它提供了对数据集汇总操作的接口。
上图我们选择按照species列分组,计算sepal_width列的平均值,同时可以看到左下角dtale已经自动为该操作生成了pandas代码。
4.2 数据可视化(Visualize)
提供比较丰富的图表,对每列数据概况、重复行、缺失值、相关系数进行统计和展示。
Visualize
举一个数据可视化的例子。
Describe
上图是Visualize菜单中Describe的功能,它可以统计每列的最值、均值、标准差等指标,并提供图表展示。
右侧的Code Export可以查看生成这些数据的代码。
4.3 高亮显示(Highlight)
对缺失值、异常值做高亮显示,方便我们快速定位到异常的数据。
Highlight
上图显示了将sepal_width字段的异常值。
dtale非常强大,功能也非常多,大家可以多多探索、挖掘。
最后,简单总结一下。如果探索的数据集侧重数据展示,可以选PandasGUI;如果只是简单了解基本统计指标,可以选择Pandas Profiling和Sweetviz;如果需要做深度的数据探索,那就选择dtale。
技术交流
欢迎转载、收藏、有所收获点赞支持一下!
目前开通了技术交流群,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~