Flask接口签名sign原理与实例代码浅析
262
2022-09-08
# yyds干货盘点 # 按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值
大家好,我是皮皮。
一、前言
前几天在Python星耀交流群有个叫【在下不才】的粉丝问了一个Pandas的问题,按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值,这里拿出来给大家分享下,一起学习。
二、解决过程
这个看上去倒是不太难,但是实现的时候,总是一看就会,一用就废。这里给出【瑜亮老师】的三个解法,一起来看看吧!
方法一:使用自定义函数
代码如下:
import pandas as pdlv = [1, 2, 2, 3, 3, 4, 2, 3, 3, 3, 3]num = [122, 111, 222, 444, 555, 555, 333, 666, 666, 777, 888]df = pd.DataFrame({'lv': lv, 'num': num})def demean(arr): return arr - arr.mean()# 按照"lv"列进行分组并计算出"num"列每个分组的平均值,然后"num"列内的每个元素减去分组平均值df["juncha"] = df.groupby("lv")["num"].transform(demean)print(df
# transform 也支持 lambda 函数,效果是一样的,更简洁一些# df["juncha"] = df.groupby("lv")["num"].transform(lambda x: x - x.mean())# print(df)
方法二:使用内置函数
代码如下:
import pandas as pdlv = [1, 2, 2, 3, 3, 4, 2, 3, 3, 3, 3]num = [122, 111, 222, 444, 555, 555, 333, 666, 666, 777, 888]df = pd.DataFrame({'lv': lv, 'num': num})gp_mean = df.groupby('lv')["num"].mean().rename("gp_mean").reset_index()df2 = df.merge(gp_mean)df2["juncha"] = df2["num"] - df2["gp_mean"]print(df2)
方法三:使用 transform
transform能返回完整数据,输出的形状和输入一致(输入是num列,输出也是一列),代码如下:
import pandas as pdlv = [1, 2, 2, 3, 3, 4, 2, 3, 3, 3, 3]num = [122, 111, 222, 444, 555, 555, 333, 666, 666, 777, 888]df = pd.DataFrame({'lv': lv, 'num': num})# 方法三: 使用 transform。df["gp_mean"] = df.groupby('lv')["num"].transform('mean')df["juncha"] = df["num"] - df["gp_mean"]print(df)# 直接输出结果,省略分组平均值列df["juncha"] = df["num"] - df.groupby('lv')["num"].transform('mean')print(df)
三、总结
大家好,我是皮皮。这篇文章主要分享了Pandas处理相关知识,基于粉丝提出的按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值的问题,给出了3个行之有效的方法,帮助粉丝顺利解决了问题。
最后感谢粉丝【在下不才】提问,感谢【德善堂小儿推拿-瑜亮老师】给出的具体解析和代码演示,感谢【月神】提供的思路,感谢【dcpeng】等人参与学习交流。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~