接口自动化测试怎么做的python(基于Python实现接口自动化测试的步骤)

知梧 291 2022-09-08


本文关于接口自动化测试怎么做的python(基于Python实现接口自动化测试的步骤)

一、简介

本文从一个简单的登录接口测试入手,一步步调整优化接口调用姿势,然后简单讨论了一下接口测试框架的要点,最后介绍了一下我们目前正在使用的接口测试框架pithy。期望读者可以通过本文对接口自动化测试有一个大致的了解。

二、引言

为什么要做接口自动化测试?

在当前互联网产品迭代频繁的背景下,回归测试的时间越来越少,很难在每个迭代都对所有功能做完整回归。但接口自动化测试因其实现简单、维护成本低,容易提高覆盖率等特点,越来越受重视。

为什么要自己写框架呢?

使用requets + unittest很容易实现接口自动化测试,而且requests的api已经非常人性化,非常简单,但通过封装以后(特别是针对公司内特定接口),再加上对一些常用工具的封装,可以进一步提高业务脚本编写效率。

三、环境准备

确保本机已安装python2.7以上版本,然后安装如下库

pip install flask

pip install requests

后面我们会使用flask写一个用来测试的接口,使用requests去测试

四、测试接口准备

下面使用flask实现两个http接口,一个登录,另外一个查询详情,但需要登录后才可以,新建一个demo.py文件(注意,不要使用windows记事本),把下面代码copy进去,然后保存、关闭

接口代码

#!/usr/bin/python

# coding=utf-8

from flask import Flask, request, session, jsonify

USERNAME = 'admin'

PASSWORD = '123456'

app = Flask(__name__)

app.secret_key = 'pithy'

@app.route('/login', methods=['GET', 'POST'])

def login():

    error = None

    if request.method == 'POST':

        if request.form['username'] != USERNAME:

            error = 'Invalid username'

        elif request.form['password'] != PASSWORD:

            error = 'Invalid password'

        else:

            session['logged_in'] = True

            return jsonify({'code': 200, 'msg': 'success'})

    return jsonify({'code': 401, 'msg': error}), 401 

@app.route('/info', methods=['get'])

def info():

    if not session.get('logged_in'):

        return jsonify({'code': 401, 'msg': 'please login !!'})

    return jsonify({'code': 200, 'msg': 'success', 'data': 'info'})

if __name__ == '__main__':

    app.run(debug=True)

最后执行如下命令

python demo.py

响应如下

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

 * Restarting with stat

大家可以看到服务已经起起来了

接口信息

登录接口

请求url

 /login

请求方法

 post

请求参数

参数名称 参数类型 参数说明

username String 登录名称

password String 登录密码

响应信息

参数名称 参数类型 参数说明

code Integer 结果code

msg String 结果信息

详情接口


请求url

/info

请求方法

get

请求cookies

参数名称 参数类型 参数说明

session String session

响应信息

参数名称 参数类型 参数说明

code Integer 结果code

msg String 结果信息

data String 数据信息

五、编写接口测试

测试思路

使用requests [使用链接] 库模拟发送HTTP请求

使用python标准库里unittest写测试case

脚本实现

#!/usr/bin/python

# coding=utf-8

import requests

import unittest

class TestLogin(unittest.TestCase):

    @classmethod

    def setUpClass(cls):

        cls.login_url = 'http://127.0.0.1:5000/login'

        cls.info_url = 'http://127.0.0.1:5000/info'

        cls.username = 'admin'

        cls.password = '123456'

 

    def test_login(self):

        """

        测试登录

        """

        data = {

            'username': self.username,

            'password': self.password

        }

 

        response = requests.post(self.login_url, data=data).json()

 

        assert response['code'] == 200

        assert response['msg'] == 'success'

 

    def test_info(self):

        """

        测试info接口

        """

 

        data = {

            'username': self.username,

            'password': self.password

        }

 

        response_cookies = requests.post(self.login_url, data=data).cookies

        session = response_cookies.get('session')

        assert session

 

        info_cookies = {

            'session': session

        }

 

        response = requests.get(self.info_url, cookies=info_cookies).json()

        assert response['code'] == 200

        assert response['msg'] == 'success'

        assert response['data'] == 'info'

六、优化

封装接口调用

写完这个测试登录脚本,你或许会发现,在整个项目的测试过程,登录可能不止用到一次,如果每次都这么写,会不会太冗余了? 对,确实太冗余了,下面做一下简单的封装,把登录接口的调用封装到一个方法里,把调用参数暴漏出来,示例脚本如下:

#!/usr/bin/python

# coding=utf-8

import requests

import unittest

try:

    from urlparse import urljoin

except ImportError:

    from urllib.parse import urljoin

class DemoApi(object):

 

    def __init__(self, base_url):

        self.base_url = base_url

 

    def login(self, username, password):

        """

        登录接口

        :param username: 用户名

        :param password: 密码

        """

        url = urljoin(self.base_url, 'login')

        data = {

            'username': username,

            'password': password

        }

 

        return requests.post(url, data=data).json()

 

    def get_cookies(self, username, password):

        """

        获取登录cookies

        """

        url = urljoin(self.base_url, 'login')

        data = {

            'username': username,

            'password': password

        }

 

        return requests.post(url, data=data).cookies

 

    def info(self, cookies):

        """

        详情接口

        """

        url = urljoin(self.base_url, 'info')

        return requests.get(url, cookies=cookies).json()

 

 

class TestLogin(unittest.TestCase):

 

    @classmethod

    def setUpClass(cls):

        cls.base_url = 'http://127.0.0.1:5000'

        cls.username = 'admin'

        cls.password = '123456'

        cls.app = DemoApi(cls.base_url)

 

    def test_login(self):

        """

        测试登录

        """

        response = self.app.login(self.username, self.password)

        assert response['code'] == 200

        assert response['msg'] == 'success'

 

    def test_info(self):

        """

        测试获取详情信息

        """

        cookies = self.app.get_cookies(self.username, self.password)

        response = self.app.info(cookies)

        assert response['code'] == 200

        assert response['msg'] == 'success'

        assert response['data'] == 'info'

OK,在这一个版本中,我们不但在把登录接口的调用封装成了一个实例方法,实现了复用,而且还把host(self.base_url)提取了出来,但问题又来了,登录之后,登录接口的http响应会把session以 cookie的形式set到客户端,之后的接口都会使用此session去请求,还有,就是在接口调用过程中,希望可以把日志打印出来,以便调试或者出错时查看。

好吧,我们再来改一版。

保持cookies&增加log信息

使用requests库里的同一个Session对象(它也会在同一个Session 实例发出的所有请求之间保持 cookie),即可解决上面的问题,示例代码如下:

#!/usr/bin/python

# coding=utf-8

import unittest

from pprint import pprint

from requests.sessions import Session

try:

    from urlparse import urljoin

except ImportError:

    from urllib.parse import urljoin

class DemoApi(object):

 

    def __init__(self, base_url):

        self.base_url = base_url

        # 创建session实例

        self.session = Session()

 

    def login(self, username, password):

        """

        登录接口

        :param username: 用户名

        :param password: 密码

        """

        url = urljoin(self.base_url, 'login')

        data = {

            'username': username,

            'password': password

        }

 

        response = self.session.post(url, data=data).json()

        print('\n*****************************************')

        print(u'\n1、请求url: \n%s' % url)

        print(u'\n2、请求头信息:')

        pprint(self.session.headers)

        print(u'\n3、请求参数:')

        pprint(data)

        print(u'\n4、响应:')

        pprint(response)

        return response

 

    def info(self):

        """

        详情接口

        """

        url = urljoin(self.base_url, 'info')

        response = self.session.get(url).json()

 

        print('\n*****************************************')

        print(u'\n1、请求url: \n%s' % url)

        print(u'\n2、请求头信息:')

        pprint(self.session.headers)

        print(u'\n3、请求cookies:')

        pprint(dict(self.session.cookies))

        print(u'\n4、响应:')

        pprint(response)

        return response

class TestLogin(unittest.TestCase):

 

    @classmethod

    def setUpClass(cls):

        cls.base_url = 'http://127.0.0.1:5000'

        cls.username = 'admin'

        cls.password = '123456'

        cls.app = DemoApi(cls.base_url)

 

    def test_login(self):

        """

        测试登录

        """

        response = self.app.login(self.username, self.password)

        assert response['code'] == 200

        assert response['msg'] == 'success'

 

    def test_info(self):

        """

        测试获取详情信息

        """

        self.app.login(self.username, self.password)

        response = self.app.info()

        assert response['code'] == 200

        assert response['msg'] == 'success'

        assert response['data'] == 'info'

大功告成,我们把多个相关接口调用封装到一个类中,使用同一个requests Session实例来保持cookies,并且在调用过程中打印出了日志,我们所有目标都实现了,但再看下脚本,又会感觉不太舒服,在每个方法里,都要写一遍print 1、2、3... 要拼url、还要很多细节等等,但其实我们真正需要做的只是拼出关键的参数(url参数、body参数或者传入headers信息),可不可以只需定义必须的信息,然后把其它共性的东西都封装起来呢,统一放到一个地方去管理?

封装重复操作

来,我们再整理一下我们的需求:

首先,不想去重复做拼接url的操作

然后,不想每次都去手工打印日志

不想和requests session打交道

只想定义好参数就直接调用

我们先看一下实现后,脚本可能是什么样:


class DemoApi(object):

 

    def __init__(self, base_url):

        self.base_url = base_url

 

    @request(url='login', method='post')

    def login(self, username, password):

        """

        登录接口

        """

        data = {

            'username': username,

            'password': password

        }

 

        return {'data': data}

 

    @request(url='info', method='get')

    def info(self):

        """

        详情接口

        """

        pass


调用登录接口的日志


******************************************************

1、接口描述

登录接口

 

2、请求url

http://127.0.0.1:5000/login

 

3、请求方法

post

 

4、请求headers

{

    "Accept": "*/*",

    "Accept-Encoding": "gzip, deflate",

    "Connection": "keep-alive",

    "User-Agent": "python-requests/2.7.0 CPython/2.7.10 Darwin/16.4.0"

}

 

5、body参数

{

    "password": "123456",

    "username": "admin"

}

 

6、响应结果

{

    "code": 200,

    "msg": "success"

}

 

在这里,我们使用python的装饰器功能,把公共特性封装到装饰器中去实现。现在感觉好多了,没什么多余的东西了,我们可以专注于关键参数的构造,剩下的就是如何去实现这个装饰器了,我们先理一下思路:


获取装饰器参数

获取函数/方法参数

把装饰器和函数定义的参数合并

拼接url

处理requests session,有则使用,无则新生成一个

组装所有参数,发送http请求并打印日志

七、扩展

http接口请求的姿势我们定义好了,我们还可以做些什么呢?

[x] 非HTTP协议接口

[x] 测试用例编写

[x] 配置文件管理

[x] 测试数据管理

[x] 工具类编写

[x] 测试报告生成

[x] 持续集成

[x] 等等等等

需要做的还是挺多的,要做什么不要做什么,或者先做哪个,我觉得可以根据以下几点去判断:

是否有利于提高团队生产效率

是否有利于提高测试质量

有没有现成的轮子可以用

下面就几项主要的点进行一下说明,限于篇幅,不再展开了


测试报告

这个应该是大家最关心的了,毕竟这是测试工作的产出;

目前python的主流单元测试框均有report插件,因此不建议自己再编写,除非有特殊需求的。

pytest:推荐使用pytest-html和allure pytest

unittest:推荐使用HTMLTestRunner

持续集成

持续集成推荐使用Jenkins,运行环境、定时任务、触发运行、邮件发送等一系列功能均可以在Jenkins上实现。

测试用例编写

推荐遵守如下规则:

原子性:每个用例保持独立,彼此不耦合,以降低干扰;

专一性:一个用例应该专注于验证一件事情,而不是做很多事情,一个测试点不要重复验证;

稳定性:绝大多数用例应该是非常稳定的,也就是说不会经常因为除环境以外的因素挂掉,因为如果在一个测试项目中有很多不稳定的用例的话,测试结果就不能很好的反应项目质量;

分类清晰:有相关性的用例应写到一个模块或一个测试类里,这样做即方便维护,又提高了报告的可读性;

测试工具类

这个可以根据项目情况去做,力求简化一些类库的使用,数据库访问、日期时间、序列化与反序列化等数据处理,或者封装一些常用操作,如随机生成订单号等等,以提高脚本编写效率。

测试数据管理

常见的方式有写在代码里、写在配置文件里(xml、yaml、json、.py、excel等)、写在数据库里等,该处没有什么好推荐的,建议根据个人喜好,怎么方便怎么来就可以。

八、pithy测试框架介绍

pithy意为简洁有力的,意在简化自动化接口测试,提高测试效率

目前实现的功能如下:

一键生成测试项目

http client封装

thrift接口封装

简化配置文件使用

优化JSON、日期等工具使用

编写测试用例推荐使用pytest,pytest提供了很多测试工具以及插件,可以满足大部分测试需求。

安装

pip install pithy-test

pip install pytest

使用

一键生成测试项目

>>>  pithy-cli init

请选择项目类型,输入api或者app: api

请输入项目名称,如pithy-api-test: pithy-api-test

开始创建pithy-api-test项目

开始渲染...

生成 api/.gitignore                   [√]

生成 api/apis/__init__.py             [√]

生成 api/apis/pithy_api.py            [√]

生成 api/cfg.yaml                     [√]

生成 api/db/__init__.py               [√]

生成 api/db/pithy_db.py               [√]

生成 api/README.MD                    [√]

生成 api/requirements.txt             [√]

生成 api/test_suites/__init__.py      [√]

生成 api/test_suites/test_login.py    [√]

生成 api/utils/__init__.py            [√]

生成成功,请使用编辑器打开该项目

生成项目树

>>> tree pithy-api-test

pithy-api-test

├── README.MD

├── apis

│   ├── __init__.py

│   └── pithy_api.py

├── cfg.yaml

├── db

│   ├── __init__.py

│   └── pithy_db.py

├── requirements.txt

├── test_suites

│   ├── __init__.py

│   └── test_login.py

└── utils

    └── __init__.py

4 directories, 10 files

调用HTTP登录接口示例

from pithy import request

@request(url='http://httpbin.org/post', method='post')

def post(self, key1='value1'):

    """

    post method

    """

    data = {

        'key1': key1

    }

    return dict(data=data)

# 使用

response = post('test').to_json()     # 解析json字符,输出为字典

response = post('test').json          # 解析json字符,输出为字典

response = post('test').to_content()  # 输出为字符串

response = post('test').content       # 输出为字符串

response = post('test').get_cookie()  # 输出cookie对象

response = post('test').cookie        # 输出cookie对象

# 结果取值, 假设此处response = {'a': 1, 'b': { 'c': [1, 2, 3, 4]}}

response = post('13111111111', '123abc').json

 

print response.b.c   # 通过点号取值,结果为[1, 2, 3, 4]

 

print response('$.a') # 通过object path取值,结果为1

 

for i in response('$..c[@>3]'): # 通过object path取值,结果为选中c字典里大于3的元素

    print i

优化JSON、字典使用

# 1、操作JSON的KEY

from pithy import JSONProcessor

dict_data = {'a': 1, 'b': {'a': [1, 2, 3, 4]}}

json_data = json.dumps(dict_data)

result = JSONProcessor(json_data)

print result.a     # 结果:1

print result.b.a   # 结果:[1, 2, 3, 4]

 # 2、操作字典的KEY

dict_data = {'a': 1, 'b': {'a': [1, 2, 3, 4]}}

result = JSONProcessor(dict_data)

print result.a     # 1

print result.b.a   # [1, 2, 3, 4]

 # 3、object path取值

raw_dict = {

    'key1':{

        'key2':{

            'key3': [1, 2, 3, 4, 5, 6, 7, 8]

        }

    }

}

 

jp = JSONProcessor(raw_dict)

for i in jp('$..key3[@>3]'):

    print i

# 4、其它用法

dict_1 = {'a': 'a'}

json_1 = '{"b": "b"}'

jp = JSONProcessor(dict_1, json_1, c='c')

print(jp)

九、总结

在本文中,我们以提高脚本开发效率为前提,一步一步打造了一个简易的测试框架,但因水平所限,并未涉及测试数据初始化清理、测试中如何MOCK等话题,前路依然任重而道远,希望给大家一个启发,不足之处还望多多指点,非常感谢。

上述就是小编为大家整理的接口自动化测试怎么做的python(基于Python实现接口自动化测试的步骤)

国内(北京、上海、广州、深圳、成都、重庆、杭州、西安、武汉、苏州、郑州、南京、天津、长沙、东莞、宁波、佛山、合肥、青岛)eolink软件分析、比较及推荐。



版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:组建网络及配置(组建网络需要什么设备)
下一篇:4种Kafka网络中断和网络分区场景分析(kafka分区数据量不均衡)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~