浅谈Java并发中ReentrantLock锁应该怎么用

网友投稿 231 2022-09-12


浅谈Java并发中ReentrantLock锁应该怎么用

目录1、重入锁说明2、中断响应说明3、锁申请等待限时tryLock(long, TimeUnit)tryLock()4、公平锁说明源码(JDK8)

重入锁可以替代关键字 synchronized 。

在 JDK5.0 的早期版本中,重入锁的性能远远优于关键字 synchronized ,

但从 JDK6.0 开始, JDK 在关键字 synchronized 上做了大量的优化,使得两者的性能差距并不大。

重入锁使用 ReentrantLock 实现

1、重入锁

package com.shockang.study.java.concurrent.lock;

import java.util.concurrent.locks.ReentrantLock;

public class ReentrantLockDemo implements Runnable {

public static ReentrantLock lock = new ReentrantLock();

public static int i = 0;

@Override

public void run() {

for (int j = 0; j < 10000000; j++) {

lock.lock();

lock.lock();

try {

i++;

} finally {

lock.unlock();

lock.unlock();

}

}

}

public static void main(String[] args) throws InterruptedException {

ReentrantLockDemo tl = new ReentrantLockDemo();

Thread t1 = new Thread(tl);

Thread t2 = new Thread(tl);

t1.start();

t2.start();

t1.join();

t2.join();

System.out.println(i);

}

}

控制台打印

20000000

说明

一个线程连续两次获得同一把锁是允许的。

如果不允许这么操作,那么同一个线程在第 2 次获得锁时,将会和自己产生死锁。

程序就会“卡死”在第 2 次申请锁的过程中。

但需要注意的是,如果同一个线程多次获得锁,那么在释放锁的时候,也必须释放相同次数。

如果释放锁的次数多了,那么会得到一个 java.lang.IllegalMonitorStateException 异常,反之,如果释放锁的次数少了,那么相当于线程还持有这个锁,因此,其他线程也无法进入临界区。

2、中断响应

对于关键字 synchronized 来说,如果一个线程在等待锁,那么结果只有两种情况,要么它获得这把锁继续执行,要么它就保持等待。

而使用重入锁,则提供另外一种可能,那就是线程可以被中断。

也就是在等待锁的过程中,程序可以根据需要取消对锁的请求。

有些时候,这么做是非常有必要的。

比如,你和朋友约好一起去打球,如果你等了半个小时朋友还没有到,你突然接到一个电话,说由于突发情况,朋友不能如约前来了,那么你一定扫兴地打道回府了。

中断正是提供了一套类似的机制。

如果一个线程正在等待锁,那么它依然可以收到一个通知,被告知无须等待,可以停止工作了。

这种情况对于处理死锁是有一定帮助的。

下面的代码产生了一个死锁,但得益于锁中断,我们可以很轻易地解决这个死锁。

package com.shockang.study.java.concurrent.lock;

import java.util.concurrent.locks.ReentrantLock;

public class IntLock implements Runnable {

public static ReentrantLock lock1 = new ReentrantLock();

public static ReentrantLock lock2 = new ReentrantLock();

int lock;

/**

* 控制加锁顺序,方便构造死锁

*

* @param lock

*/

public IntLock(int lock) {

this.lock = lock;

}

@Override

public void run() {

try {

if (lock == 1) {

lock1.lockInterruptibly();

try {

Thread.sleep(500);

} catch (InterruptedException e) {

}

lock2.lockInterruptibly();

} else {

lock2.lockInterruptibly();

try {

Thread.sleep(500);

} catch (InterruptedException e) {

}

lock1.lockInterruptibly();

}

} catch (InterruptedException e) {

e.printStackTrace();

} finally {

if (lock1.isHeldByCurrentThread())

lock1.unlock();

if (lock2.isHeldByCurrentThread())

lock2.unlock();

System.out.println(Thread.currentThread().getId() + ":线程退出");

}

}

public static void main(String[] args) throws InterruptedException {

IntLock r1 = new IntLock(1);

IntLock r2 = new IntLock(2);

Thread t1 = new Thread(r1);

Thread t2 = new Thread(r2);

t1.start();

t2.start();

Thread.sleep(1000);

//中断其中一个线程

t2.interrupt();

}

}

控制台输出

java.lang.InterruptedException

at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireInterruptibly(AbstractQueuedSynchronizer.java:898)

at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireInterruptibly(AbstractQueuedSynchronizer.java:1222)

at java.util.concurrent.locks.ReentrantLock.lockInterruptibly(ReentrantLock.java:335)

at com.shockang.study.java.concurrent.lock.IntLock.run(IntLock.java:35)

at java.lang.Thread.run(Thread.java:748)

11:线程退出

12:线程退出

说明

线程 t1 和 t2 启动后, t1 先占用 lock1 ,再占用 lock2。

t2 先占用 lock2 ,再请求 lock1。

因此,很容易形成 t1 和 t2 之间的相互等待。

在这里,对锁的请求,统一使用 lockInterruptibly() 方法。

这是一个可以对中断进行响应的锁申请动作,即在等待锁的过程中,可以响应中断。

在代码第 56 行,主线程 main 处于休眠状态,此时,这两个线程处于死锁的状态。

在代码第 58 行,由于 t2 线程被中断,故 t2 会放弃对 lock1 的申请,同时释放已获得的 lock2 。

这个操作导致 t1 线程可以顺利得到 lock2 而继续执行下去。

3、锁申请等待限时

除了等待外部通知之外,要避免死锁还有另外一种方法,那就是限时等待。

依然以约朋友打球为例,如果朋友退退不来,又无法联系到他,那么在等待 1 到 2 个小时后,我想大部分人都会扫兴离去。

对线程来说也是这样。

通常,我们无法判断为什么一个线程退迟拿不到锁。

也许是因为死锁了,也许是因为产生了饥饿。

如果给定一个等待时间,让线程自动放弃,那么对系统来说是有意义的。

我们可以使用 tryLock() 方法进行一次限时的等待。

tryLock(long, TimeUnit)

下面这段代码展示了限时等待锁的使用。

package com.shockang.study.java.concurrent.lock;

import java.util.concurrent.TimeUnit;

import java.util.concurrent.locks.ReentrantLock;

public class TimeLock implements Runnable {

public static ReentrantLock lock = new RxGcHLCMeentrantLock();

@Override

public void run() {

try {

if (lock.tryLock(5, TimeUnit.SECONDS)) {

Thread.sleep(6000);

} else {

System.out.println("get lock failed");

}

} catch (InterruptedException e) {

e.printStackTrace();

} finally {

lock.unlock();

}

}

public static void main(String[] args) {

TimeLock tl = new TimeLock();

Thread t1 = new Thread(tl);

Thread t2 = new Thread(tl);

t1.start();

t2.start();

}

}

控制台打印

get lock failed

Exception in thread "Thread-1" java.lang.IllegalMonitorStateException

at java.util.concurrent.locks.ReentrantLock$Sync.tryRelease(ReentrantLock.java:151)

at java.util.concurrent.locks.AbstractQueuedSynchronizer.release(AbstractQueuedSynchronizer.java:1261)

at java.util.concurrent.locks.ReentrantLock.unlock(ReentrantLock.java:457)

at com.shockang.study.java.concurrent.lock.TimeLock.run(TimeLock.java:20)

at java.lang.Thread.run(Thread.java:748)

说明

在这里, tryLock() 方法接收两个参数,一个表示等待时长,另外一个表示计时单位。

这里的单位设置为秒,时长为 5 ,表示线程在这个锁请求中最多等待 5 秒。

如果超过 5 秒还没有得到锁,就会返回 false 。

如果成功获得锁,则返回 true 。

在本例中,由于占用锁的线程会持有锁长达 6 秒,故另一个线程无法在 5 秒的等待时间内获得锁,因此请求锁会失败。

tryLock()

ReentrantLock.tryLock() 方法也可以不带参数直接运行。

在这种情况下,当前线程会尝试获得锁,如果锁并未被其他线程占用,则申请锁会成功,并立即返回 true 。

如果锁被其他线程占用,则当前线程不会进行等待,而是立即返回 false 。

这种模式不会引起线程等待,因此也不会产生死锁。

package com.shockang.study.java.concurrent.lock;

import java.util.concurrent.locks.ReentrantLock;

public class TryLock implements Runnable {

public static ReentrantLock lock1 = new ReentrantLock();

public static ReentrantLock lock2 = new ReentrantLock();

int lock;

public TryLock(int lock) {

this.lock = lock;

}

@Override

public void run() {

if (lock == 1) {

while (true) {

if (lock1.tryLock()) {

try {

try {

Thread.sleep(500);

} catch (InterruptedException e) {

}

if (lock2.tryLock()) {

try {

System.out.println(Thread.currentThread()

.getId() + ":My Job done");

return;

} finally {

lock2.unlock();

}

}

} finally {

lock1.unlock();

}

}

}

} else {

while (true) {

if (lock2.tryLock()) {

try {

try {

Thread.sleep(500);

} catch (InterruptedException e) {

}

if (lock1.tryLock()) {

try {

xGcHLCM System.out.println(Thread.currentThread()

.getId() + ":My Job done");

return;

} finally {

lock1.unlock();

}

}

} finally {

lock2.unlock();

}

}

}

}

}

public static void main(String[] args) throws InterruptedException {

TryLock r1 = new TryLock(1);

TryLock r2 = new TryLock(2);

Thread t1 = new Thread(r1);

Thread t2 = new Thread(r2);

t1.start();

t2.start();

}

}

控制台输出

11:My Job done

12:My Job done

说明

上述代码采用了非常容易死锁的加锁顺序。

也就是先让 t1 获得 lock1 ,再让 2 获得 lock2 ,接着做反向请求,让 t1 申请 lock2 , t2 申请 lock1 。

在一般情况下,这会导致 t1 和 2 相互等待。

待,从而引起死锁。

但是使用 tryLock() 方法后,这种情况就大大改善了。

由于线程不会傻傻地等待,而是不停地尝试,因此,只要执行足够长的时间,线程总是会得到所有需要的资源,从而正常执行(这里以线程同时获得 lock1 和 lock2 两把锁,作为其可以正常执行的条件)。

在同时获得 lock1 和 lock2 后,线程就打印出标志着任务完成的信息“ My Job done”。

4、公平锁

在大多数情况下,锁的申请都是非公平的。

也就是说,线程 1 首先请求了锁 A ,接着线程 2 也请求了锁 A 。

那么当锁 A 可用时,是线程 1 可以获得锁还是线程 2 可以获得锁呢?

这是不一定的,系统只是会从这个锁的等待队列中随机挑选一个。

因此不能保证其公平性。

这就好比买票不排队,大家都围在售票窗口前,售票员忙得焦头烂额,也顾不及谁先谁后,随便找个人出票就完事了。

而公平的锁,则不是这样,它会按照时间的先后顺序,保证先到者先得,后到者后得。

公平锁的一大特点是:它不会产生饥饿现象。

关于线程饥饿请参考我的博客——死锁、活锁和饥饿是什么意思?

只要你排队,最终还是可以等到资源的。

如果我们使用 synchronized 关键字进行锁控制,那么产生的锁就是非公平的。

而重入锁允许我们对其公平性进行设置。

它的构造函数如下:

/**

* 使用给定的公平策略创建一个 ReentrantLock 的实例。

*

* @param fair 如果此锁应使用公平排序策略为 true

*/

public ReentrantLock(boolean fair) {

sync = fair ? new FairSync() : new NonfairSync();

}

当参数 fair 为 true 时,表示锁是公平的。

公平锁看起来很优美,但是要实现公平锁必然要求系统维护一个有序队列,因此公平锁的实现成本比较高,性能却非常低下,因此,在默认情况下,锁是非公平的。

如果没有特别的需求,则不需要使用公平锁。

公平锁和非公平锁在线程调度表现上也是非常不一样的。

下面的代码可以很好地突出公平锁的特点。

package com.shockang.study.java.concurrent.lock;

import java.util.concurrent.locks.ReentrantLock;

public class FairLock implements Runnable {

public static ReentrantLock fairLock = new ReentrantLock(true);

@Override

public void run() {

while (true) {

try {

fairLock.lock();

System.out.println(Thread.currentThread().getName() + " 获得锁");

} finally {

fairLock.unlock();

}

}

}

public static void main(String[] args) throws InterruptedException {

FairLock r1 = new FairLock();

Thread t1 = new Thread(r1, "Thread_t1");

Thread t2 = new Thread(r1, "Thread_t2");

t1.start();

t2.start();

}

}

控制台输出

获得锁

Thread_t2 获得锁

Thread_t2 获得锁

Thread_t2 获得锁

Thread_t2 获得锁

Thread_t1 获得锁

Thread_t1 获得锁

Thread_t2 获得锁

Thread_t2 获得锁

Thread_t2 获得锁

Thread_t1 获得锁

Thread_t1 获得锁

# 省略

说明

由于代码会产生大量输出,这里只截取部分进行说明。

在这个输出中,很明显可以看到,两个线程基本上是交替获得锁的,几乎不会发生同一个线程连续多次获得锁的可能,从而保证了公平性。

如果设置了 false,则会根据系统的调度,一个线程会倾向于再次获取已经持有的锁,这种分配方式是高效的,但是无公平性可言。

源码(JDK8)

/**

* 一种可重入互斥锁,其基本行为和语义与使用同步方法和语句访问的隐式监视锁(即 synchronized)相同,但具有扩展功能。

*

* 可重入锁属于上次成功锁定但尚未解锁它的线程。

*

* 当锁不属于另一个线程时,调用锁的线程将返回,并成功获取锁。

*

* 如果当前线程已经拥有锁,则该方法将立即返回。这可以使用 isHeldByCurrentThread 和 getHoldCount 方法进行检查。

*

* 此类的构造函数接受可选的公平性参数。

*

* 当设置为 true 时,在竞争状态下,锁有利于向等待时间最长的线程授予访问权限。否则,此锁不保证任何特定的访问顺序。

*

* 使用由多线程访问的公平锁的程序可能显示较低的总吞吐量

*

* (即,较慢;通常比使用默认设置的要慢得多,但是在获得锁和保证不饥饿的时间上有较小的差异。

*

* 但是请注意,锁的公平性并不能保证线程调度的公平性。

*

* 因此,使用公平锁的多个线程中的一个线程可以连续多次获得公平锁,而其他活动线程则没有进行并且当前没有持有该锁。

*

* 还要注意,untimed tryLock() 方法不支持公平性设置。

*

* 如果锁可用,即使其他线程正在等待,它也会成功。

*

* 建议的做法是总是在调用之后立即使用try块锁定,最典型的是在构建之前/之后,例如:

*

* class X {

* private final ReentrantLock lock = new ReentrantLock();

* // ...

*

* public void m() {

* lock.lock(); // block until condition holds

* try {

* // ... method body

* } finally {

* lock.unlock()

* }

* }

* }}

*

* 除了实现锁接口之外,这个类还定义了许多公共和受保护的方法来检查锁的状态。

*

* 其中一些方法只对 instrumentation 和 monitoring 有用。

*

* 此类的序列化与内置锁的行为相同:反序列化的锁处于未锁定状态,而与序列化时的状态无关。

*

* 此锁最多支持同一线程的2147483647个递归锁。尝试超过此限制会导致锁定方法抛出错误。

*

* @since 1.5

* @author Doug Lea

*/

public class ReentrantLock implements Lock, java.io.Serializable


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:DNS分离解析实战(可全程跟做)(第三方dns解析)
下一篇:dig常用命令解释(linux中dig命令)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~