SpringBoot 进行限流的操作方法

网友投稿 221 2022-09-23


SpringBoot 进行限流的操作方法

目录为什么要进行限流?什么是限流?有哪些限流算法?1. 计数器限流2. 漏桶算法3. 令牌桶算法基于Guava工具类实现限流基于AOP实现接口限流小结

大家好,我是飘渺。SpringBoot老鸟系列的文章已经写了四篇,每篇的阅读反响都还不错,那今天继续给大家带来老鸟系列的第五篇,来聊聊在SpringBoot项目中如何对接口进行限流,有哪些常见的限流算法,如何优雅的进行限流(基于AOP)。

首先就让我们来看看为什么需要对接口进行限流?

为什么要进行限流?

因为互联网系统通常都要面对大并发大流量的请求,在突发情况下(最常见的场景就是秒杀、抢购),瞬时大流量会直接将系统打垮,无法对外提供服务。那为了防止出现这种情况最常见的解决方案之一就是限流,当请求达到一定的并发数或速率,就进行等待、排队、降级、拒绝服务等。

例如,12306购票系统,在面对高并发的情况下,就是采用了限流。 在流量高峰期间经常会出现提示语;“当前排队人数较多,请稍后再试!”

什么是限流?有哪些限流算法?

限流是对某一时间窗口内的请求数进行限制,保持系统的可用性和稳定性,防止因流量暴增而导致的系统运行缓慢或宕机。

常见的限流算法有三种:

1. 计数器限流

计数器限流算法是最为简单粗暴的解决方案,主要用来限制总并发数,比如数据库连接池大小、线程池大小、接口访问并发数等都是使用计数器算法。

如:使用 AomicInteger 来进行统计当前正在并发执行的次数,如果超过域值就直接拒绝请求,提示系统繁忙。

2. 漏桶算法

漏桶算法思路很简单,我们把水比作是请求,漏桶比作是系统处理能力极限,水先进入到漏桶里,漏桶里的水按一定速率流出,当流出的速率小于流入的速率时,由于漏桶容量有限,后续进入的水直接溢出(拒绝请求),以此实现限流。

3. 令牌桶算法

令牌桶算法的原理也比较简单,我们可以理解成医院的挂号看病,只有拿到号以后才可以进行诊病。

系统会维护一个令牌(token)桶,以一个恒定的速度往桶里放入令牌(token),这时如果有请求进来想要被处理,则需要先从桶里获取一个令牌(token),当桶里没有令牌(token)可取时,则该请求将被拒绝服务。令牌桶算法http://通过控制桶的容量、发放令牌的速率,来达到对请求的限制。

基于Guava工具类实现限流

Google开源工具包Guava提供了限流工具类RateLimiter,该类基于令牌桶算法实现流量限制,使用十分方便,而且十分高效,实现步骤如下:

第一步:引入guava依赖包

com.google.guava

guava

30.1-jre

第二步:给接口加上限流逻辑

@Slf4j

@RestController

@RequestMapping("/limit")

public class LimitController {

/**

* 限流策略 : 1秒钟2个请求

*/

private final RateLimiter limiter = RateLimiter.create(2.0);

private DateTimeFormatter dtf = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");

@GetMapping("/test1")

public String testLimiter() {

//500毫秒内,没拿到令牌,就直接进入服务降级

boolean tryAcquire = limiter.tryAcquire(500, TimeUnit.MILLISECONDS);

if (!tryAcquire) {

log.warn("进入服务降级,时间{}", LocalDateTime.now().format(dtf));

return "当前排队人数较多,请稍后再试!";

}

log.info("获取令牌成功,时间{}", LocalDateTime.now().format(dtf));

return "请求成功";

}

}

以上用到了RateLimiter的2个核心方法:create()、tryAcquire(),以下为详细说明

acquire() 获取一个令牌, 改方法会阻塞直到获取到这一个令牌, 返回值为获取到这个令牌花费的时间

acquire(int permits) 获取指定数量的令牌, 该方法也会阻塞, 返回值为获取到这 N 个令牌花费的时间

tryAcquire() 判断时候能获取到令牌, 如果不能获取立即返回 false

tryAcquire(int permits) 获取指定数量的令牌, 如果不能获取立即返回 false

tryAcquire(long timeout, TimeUnit unit) 判断能否在指定时间内获取到令牌, 如果不能获取立即返回 false

tryAcquire(int permits, long timeout, TimeUnit unit) 同上

第三步:体验效果

通过访问测试地址: http://127.0.0.1:8080/limit/test1,反复刷新并观察后端日志

WARN LimitController:35 - 进入服务降级,时间2021-09-25 21:39:37

WARN LimitController:35 - 进入服务降级,时间2021-09-25 21:39:37

INFO LimitController:39 - 获取令牌成功,时间2021-09-25 21:39:37

WARN LimitController:35 - 进入服务降级,时间2021-09-25 21:39:37

WARN LimitController:35 - 进入服务降级,时间2021-09-25 21:39:37

INFO LimitController:39 - 获取令牌成功,时间2021-09-25 21:39:37

WARN LimitController:35 - 进入服务降级,时间2021-09-25 21:39:38

INFO LimitController:39 - 获取令牌成功,时间2021-09-25 21:39:38

WARN LimitController:35 - 进入服务降级,时间2021-09-25 21:39:38

INFO LimitController:39 - 获取令牌成功,时间2021-09-25 21:39:38

从以上日志可以看出,1秒钟内只有2次成功,其他都失败降级了,说明我们已经成功给接口加上了限流功能。

当然了,我们在实际开发中并不能直接这样用。至于原因嘛,你想呀,你每个接口都需要手动给其加上tryAcquire(),业务代码和限流代码混在一起,而且明显违背了DRY原则,代码冗余,重复劳动。代码评审时肯定会被老鸟们给嘲笑一番,啥破玩意儿!

所以,我们这里需要想办法将其优化 - 借助自定义注解+AOP实现接口限流。

基于AOP实现接口限流

基于AOP的实现方式也非常简单,实现过程如下:

第一步:加入AOP依赖

org.springframework.boot

spring-boot-starter-aop

第二步:自定义限流注解

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.METHOD})

@Documented

public @interface Limit {

/**

* 资源的key,唯一

* 作用:不同的接口,不同的流量控制

*/

String key() default "";

/**

* 最多的访问限制次数

*/

double permitsPerSecond () ;

/**

* 获取令牌最大等待时间

*/

long timeout();

/**

* 获取令牌最大等待时间,单位(例:分钟/秒/毫秒) 默认:毫秒

*/

TimeUnit timeunit() default TimeUnit.MILLISECONDS;

/**

* 得不到令牌的提示语

*/

String msg() default "系统繁忙,请稍后再试.";

}

第三步:使用AOP切面拦截限流注解

@Slf4j

@Aspect

@Component

public class LimitAop {

/**

* 不同的接口,不同的流量控制

* map的key为 Limiter.key

*/

private final Map limitMap = Maps.newConcurrentMap();

@Around("@annotation(com.jianzh5.blog.limit.Limit)")

public Object around(ProceedingJoinPoint joinPoint) throws Throwable{

MethodSignature signature = (MethodSignature) joinPoint.getSignature();

Method method = signature.getMethod();

//拿limit的注解

Limit limit = method.getAnnothttp://ation(Limit.class);

if (limit != null) {

//key作用:不同的接口,不同的流量控制

String key=limit.key();

http:// RateLimiter rateLimiter = null;

//验证缓存是否有命中key

if (!limitMap.containsKey(key)) {

// 创建令牌桶

rateLimiter = RateLimiter.create(limit.permitsPerSecond());

limitMap.put(key, rateLimiter);

log.info("新建了令牌桶={},容量={}",key,limit.permitsPerSecond());

}

rateLimiter = limitMap.get(key);

// 拿令牌

boolean acquire = rateLimiter.tryAcquire(limit.timeout(), limit.timeunit());

// 拿不到命令,直接返回异常提示

if (!acquire) {

log.debug("令牌桶={},获取令牌失败",key);

this.responseFail(limit.msg());

return null;

}

}

return joinPoint.proceed();

}

/**

* 直接向前端抛出异常

* @param msg 提示信息

*/

private void responseFail(String msg) {

HttpServletResponse response=((ServletRequestAttributes) RequestContextHolder.getRequestAttributes()).getResponse();

ResultData resultData = ResultData.fail(ReturnCode.LIMIT_ERROR.getCode(), msg);

WebUtils.writejson(response,resultData);

}

}

第四步:给需要限流的接口加上注解

@Slf4j

@RestController

@RequestMapping("/limit")

public class LimitController {

nWJQe

@GetMapping("/test2")

@Limit(key = "limit2", permitsPerSecond = 1, timeout = 500, timeunit = TimeUnit.MILLISECONDS,msg = "当前排队人数较多,请稍后再试!")

public String limit2() {

log.info("令牌桶limit2获取令牌成功");

return "ok";

}

@GetMapping("/test3")

@Limit(key = "limit3", permitsPerSecond = 2, timeout = 500, timeunit = TimeUnit.MILLISECONDS,msg = "系统繁忙,请稍后再试!")

public String limit3() {

log.info("令牌桶limit3获取令牌成功");

return "ok";

}

}

第五步:体验效果

通过访问测试地址: http://127.0.0.1:8080/limit/test2,反复刷新并观察输出结果:

正常响应时:

{"status":100,"message":"操作成功","data":"ok","timestamp":1632579377104}

触发限流时:

{"status":2001,"message":"系统繁忙,请稍后再试!","data":null,"timestamp":1632579332177}

通过观察得之,基于自定义注解同样实现了接口限流的效果。

小结

一般在系统上线时我们通过对系统压测可以评估出系统的性能阀值,然后给接口加上合理的限流参数,防止出现大流量请求时直接压垮系统。今天我们介绍了几种常见的限流算法(重点关注令牌桶算法),基于Guava工具类实现了接口限流并利用AOP完成了对限流代码的优化。

在完成优化后业务代码和限流代码解耦,开发人员只要一个注解,不用关心限流的实现逻辑,而且减少了代码冗余大大提高了代码可读性,代码评审时谁还能再笑话你?

源码下载

https:http:////github.com/jianzh5/cloud-blog/


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:ACL通配符,子网掩码,反掩码区别和计算方式(acl是通配符还是反掩码)
下一篇:动态NAT配置(动态NAT配置实例与详解cisco)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~