java多线程使用mdc追踪日志方式

网友投稿 423 2022-09-26


java多线程使用mdc追踪日志方式

目录多线程使用mdc追踪日志背景解决方案实现参考多线程日志追踪1.问题描述2. 代理实现日志追踪

多线程使用mdc追踪日志

背景

多线程情况下,子线程的sl4j打印日志缺少traceId等信息,导致定位问题不方便

解决方案

打印日志时添加用户ID、trackId等信息,缺点是每个日志都要手动添加

使用mdc直接拷贝父线程值

实现

// 新建线程时:

Map mdcContextMap = MDC.getCopyOfContextMap()

// 子线程运行时:

if(null != mdcContextMap){

MDC.setContextMap(mdcContextMap);

}

// 销毁线程时

MDC.clear();

参考

import org.slf4j.MDC;

import java.util.Map;

import java.util.concurrent.*;

/**

* A SLF4J MDC-compatible {@link ThreadPoolExecutor}.

*

* In general, MDC is used to store diagnostic information (e.g. a user's session id) in per-thread variables, to facilitate

* logging. However, although MDC data is passed to thread children, this doesn't work when threads are reused in a

* thread pool. This is a drop-in replacement for {@link ThreadPoolExecutor} sets MDC data before each task appropriately.

*

* Created by jlevy.

* Date: 6/14/13

*/

public class MdcThreadPoolExecutor extends ThreadPoolExecutor {

final private boolean useFixedContext;

final private Map fixedContext;

/**

* Pool where task threads take MDC from the submitting thread.

*/

public static MdcThreadPoolExecutor newWithInheritedMdc(int corePoolSize, int maximumPoolSize, long keepAliveTime,

TimeUnit unit, BlockingQueue workQueue) {

return new MdcThreadPoolExecutor(null, corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);

}

/**

* Pool where task threads take fixed MDC from the thread that creates the pool.

*/

@SuppressWarnings("unchecked")

public static MdcThreadPoolExecutor newWithCurrentMdc(int corePoolSize, int maximumPoolSize, long keepAliveTime,

TimeUnit unit, BlockingQueue workQueue) {

return new MdcThreadPoolExecutor(MDC.getCopyOfContextMap(), corePoolSize, maximumPoolSize, keepAliveTime, unit,

workQueue);

}

/**

* Pool where task threads always have a specified, fixed MDC.

*/

public static MdcThreadPoolExecutor newWithFixedMdc(Map fixedContext, int corePoolSize,

int maximumPoolSize, long keepAliveTime, TimeUnit unit,

BlockingQueue workQueue) {

return new MdcThreadPoolExecutor(fixedContext, corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);

}

private MdcThreadPoolExecutor(Map fixedContext, int corePoolSize, int maximumPoolSize,

long keepAliveTime, TimeUnit unit, BlockingQueue workQueue) {

super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);

this.fixedContext = fixedContext;

useFixedContext = (fixedContext != null);

}

@SuppressWarnings("unchecked")

pHbfQtgSjrivate Map getContextForTask() {

return useFixedContext ? fixedContext : MDC.getCopyOfContextMap();

}

/**

* All executions will have MDC injected. {@code ThreadPoolExecutor}'s submission methods ({@code submit()} etc.)

* all delegate to this.

*/

@Override

public void execute(Runnable command) {

super.execute(wrap(command, getContextForTask()));

}

public static Runnable wrap(final Runnable runnable, final Map context) {

return new Runnable() {

@Override

public void run() {

Map previous = MDC.getCopyOfContextMap();

if (context == null) {

MDC.clear();

} else {

MDC.setContextMap(context);

}

try {

runnable.run();

} finally {

if (previous == null) {

MDC.clear();

} else {

MDC.setContextMap(previous);

}

}

}

};

}

}

多线程日志追踪

主要目的是记录工作中的一些编程思想和细节,以便后来查阅。

1.问题描述

由于项目中设计高并发内容,涉及到一个线程创建多个子线程的情况。 那么,如何跟踪日志,识别子线程是由哪个主线程创建的,属于哪个request请求。

例如, 在现有项目中,一个设备信息上传的请求(包括基本数据和异常数据两种数据),然后主线程创建两个子线程,来处理基本数据和异常数据。

简化代码如下:

public class mainApp {

public static void main(String[] args) {

Thread t = new Thread(new Runnable() {

@Override

public void run() {

//接收到一个request

System.out.println("[Thread-"+ Thread.currentThread().getId() +"]开始发起请求");

String[] data = {"异常数据","基本数据"};

//创建子线程1,处理异常数据

MThread mThread1 = new MThread(new Runnable() {

@Override

public void run() {

System.out.printHbfQtgSjln("[Thread-"+ Thread.currentThread().getId() +"]处理了" + data[0]);

}

});

创建子线程2,处理普通数据

MThread mThread2 = new MThread(new Runnable() {

@Override

public void run() {

System.out.println("[Thread-"+ Thread.currentThread().getId() +"]处理了" + data[1]);

}

});

new Thread(mThread1).start();

new Thread(mThread2).start();

}

});

t.start();

}

}

class MThread implements Runnable {

private Runnable r;

public MThread(Runnable r) {

this.r = r;

}

@Override

public void run() {

r.run();

}

}

运行结果如下:

一个请求有三个线程,如果有多个请求,运行结果如下:

从日志中无法看出他们之间的所属关系(判断不出来他们是否是处理同一个request请求的)。如果某一个线程出现问题,我们也很难快速定位是哪个请求的处理结果。

2. 代理实现日志追踪

因此,我们使用MDC来在日志中增加traceId(同一个请求的多个线程拥有同一个traceId)。

思路如下:

1. 在request进来的时候, 利用AOP为每个request创建一个traceId(保证每个request的traceId不同, 同一个request的traceId相同)

2. 创建子线程的时候, 将traceId通过动态代理的方式,传递到子线程中

public class mainApp {

public static voHbfQtgSjid main(String[] args) {

Runnable runnable = new Runnable() {

@Override

public void run() {

//AOP 生成一个traceId

MDC.put("traceId", UUID.randomUUID().toString().replace("-", ""));

//接收到一个request

System.out.println("[Thread-"+ Thread.currentThread().getId() +"]traceId["+ MDC.get("traceId") +"]开始发起请求");

String[] data = {"异常数据","基本数据"};

MThread mThread1 = new MThread(new Runnable() {

@Override

public void run() {

System.out.println("[Thread-"+ Thread.currentThread().getId() +"]traceId["+ MDC.get("traceId") +"]处理了" + data[0]);

}

}, MDC.getCopyOfContextMap());

MThread mThread2 = new MThread(new Runnable() {

@Override

public void run() {

System.out.println("[Thread-"+ Thread.currentThread().getId() +"]traceId["+ MDC.get("traceId") +"]处理了" + data[1]);

HbfQtgSj }

}, MDC.getCopyOfContextMap());

new Thread(mThread1).start();

new Thread(mThread2).start();

}

};

new Thread(runnable).start();

new Thread(runnable).start();

}

}

class MThread implements Runnable {

private Runnable r;

public MThread(Runnable r, Map parentThreadMap) {

LogProxy logProxy = new LogProxy(r, parentThreadMap);

Runnable rProxy = (Runnable) Proxy.newProxyInstance(r.getClass().getClassLoader(), r.getClass().getInterfaces(), logProxy);

this.r = rProxy;

}

@Override

public void run() {

r.run();

}

}

//日志代理

class LogProxy implements InvocationHandler {

private Runnable r;

private Map parentThreadMap;

public LogProxy(Runnable r, Map parentThreadMap) {

this.r = r;

this.parentThreadMap = parentThreadMap;

}

@Override

public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {

if (method.getName().equals("run")) {

MDC.setContextMap(parentThreadMap);

}

return method.invoke(r, args);

}

}

运行结果如下:

两个请求, 同一个请求的traceId相同,不同请求的traceId不同。 完美实现多线程的日志追踪。

实际WEB项目中,只需要在logback日志配置文件中,

logging.pattern.console参数增[%X{traceId}]即可在LOGGER日志中打印traceId的信息。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:OSPF综合实验 (题目部分)
下一篇:BGP-20190320-next-hop-self
相关文章

 发表评论

暂时没有评论,来抢沙发吧~