Java同步关键字synchronize底层实现原理解析

网友投稿 219 2022-10-05


Java同步关键字synchronize底层实现原理解析

目录1 字节码层实现1.1 InterpreterRuntime::monitorenter1.1.1 函数参数 javaThread *thread1.1.2 函数体 2 偏向锁 2.1 偏向锁的意义2.2 偏向锁的获取2.2.1 markOop mark = obj->mark()2.2.2 判断mark是否为可偏向状态2.2.3 判断mark中JavaThread的状态2.2.4 通过CAS原子指令2.2.5 如果执行CAS失败2.3 偏向锁的撤销2.4 轻量级锁2.4.1 引入轻量级锁的目的2.4.2 轻量级锁的获取总结

1 字节码层实现

javap 生成的字节码中包含如下指令:

monitorenter

monitorexit

synchronized基此实现了简单直接的锁的获取和释放。

当JVM的解释器执行monitorenter时会进入到

InterpreterRuntime.cpp的

1.1 InterpreterRuntime::monitorenter

1.1.1 函数参数 JavaThread *thread

封装 Java线程 帧状态的与机器/操作系统相关的部分的对象,这里传参代表程序中的当前线程BasicObjectLock *elem

BasicLock 类型的 _lock 对象主要用来保存 _obj 对象的对象头数据:

1.1.2 函数体

UseBiasedLocking 标识JVM是否开启偏向锁功能

如果开启则执行fast_enter逻辑

否则执行slow_enter

2 偏向锁

2.1 偏向锁的意义

无多线程竞争时,尽量减少不必要的轻量级锁执行路径。

轻量级锁的获取及释放依赖多次的CAS操作,而偏向锁只依赖一次CAS置换ThreadID。

当存在高度的锁竞争和低数据竞争时,RTM 锁最有用。

高锁争用情况下,锁通常会膨胀,而偏向锁不适于这种情况。

RTM 锁代码要求关闭偏向锁。

注意:我们不能在 get_processor_features() 中关闭 UseBiasedLocking,因为它被 Thread::allocate() 使用,它在 VM_Version::initialize() 之前调用。

if (UseRTMLocking && UseBiasedLocking) {

if (FLAG_IS_DEFAULT(UseBiasedLocking)) {

FLAG_SET_DEFAULT(UseBiasedLocking, false);

} else {

warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );

UseBiasedLocking = false;

}

}

一旦出现多个线程竞争时必须撤销偏向锁,所以:

撤销偏向锁消耗的性能必须 < 之前节省下来的CAS原子操作的性能消耗

不然得不偿失!

JDK 6中默认开启偏向锁,可以通过-XX:-UseBiashttp://edLocking禁用偏向锁。

偏向锁的入口位于synchronizer.cpp文件的ObjectSynchronizer::fast_enter函数

2.2 偏向锁的获取

由BiasedLocking::revoke_and_rebias方法实现

2.2.1 markOop mark = obj->mark()

获取对象的markOop数据mark,即对象头的Mark Word

2.2.2 判断mark是否为可偏向状态

mark的偏向锁标志位为 1 锁标志位为 01

2.2.3 判断mark中JavaThread的状态

如果为空,则进入步骤(4);如果指向当前线程,则执行同步代码块;如果指向其它线程,进入步骤(5);

2.2.4 通过CAS原子指令

设置mark中JavaThread为当前线程ID,如果执行CAS成功,则执行同步代码块,否则进入步骤(5);

2.2.5 如果执行CAS失败

表示当前存在多个线程竞争锁,当达到全局安全点(safepoint),获得偏向锁的线程被挂起,撤销偏向锁,并升级为轻量级,升级完成后被阻塞在安全点的线程继续执行同步代码块;

2.3 偏向锁的撤销

只有当其它线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁,偏向锁的撤销由BiasedLocking::revoke_at_safepoint方法实现:

1、偏向锁的撤销动作必须等待全局安全点;

2、暂停拥有偏向锁的线程,判断锁对象是否处于被锁定状态;

3、撤销偏向锁,恢复到无锁(标志位为 01)或轻量级锁(标志位为 00)的状态;

偏向锁在Java 1.6之后是默认启用的,但在应用程序启动几秒钟之后才激活,可以使用

-XX:BiasedLockingStartupDelay=0

参数关闭延迟,如果确定应用程序中所有锁通常情况下处于竞争状态,可以通过

XX:-UseBiasedLockingLEQIOHpJEe=false

参数关闭偏向锁。

2.4 轻量级锁

2.4.1 引入轻量级锁的目的

在多线程交替执行同步块的情况下,尽量避免重量级锁引起的性能消耗,但是如果多个线程在同一时刻进入临界区,会导致轻量级锁膨胀升级重量级锁,所以轻量级锁的出现并非是要替代重量级锁

2.4.2 轻量级锁的获取

当关闭偏向锁功能,或多个线程竞争偏向锁导致偏向锁升级为轻量级锁,会尝试获取轻量级锁,其入口位于ObjectSynchronizer::slow_enter

1、markOop mark = obj->mark()方法获取对象的markOop数据mark;

2、mark->is_neutral()方法判断mark是否为无锁状态:mark的偏向锁标志位为 0,锁标志位为 01;

3、如果mark处于无锁状态,则进入步骤(4),否则执行步骤(6);

4、把mark保存到BasicLock对象的_displaced_header字段;

5、通过CAS尝试将Mark Word更新为指向BasicLock对象的指针,如果更新成功,表示竞争到锁,则执行同步代码,否则执行步骤(6);

6、如果当前mark处于加锁状态,且mark中的ptr指针指向当前线程的栈帧,则执行同步代码,否则说明有多个线程竞争轻量级锁,轻量级锁需要膨胀升级为重量级锁;

假设线程A和B同时执行到临界区if (mark->is_neutral()):

1、线程AB都把Mark Word复制到各自的_displaced_header字段,该数据保存在线程的栈帧上,是线程私有的;

2、Atomic::cmpxchg_ptr原子操作保证只有一个线程可以把指向栈帧的指针复制到Mark Word,假设此时线程A执行成功,并返回继续执行同步代码块;

3、线程B执行失败,退出临界区,通过ObjectSynchronizer::inflate方法开始膨胀锁;

轻量级锁的释放

轻量级锁的释放通过ObjectSynchronizer::fast_exit完成。

1、确保处于偏向锁状态时不会执行这段逻辑;

2、取出在获取轻量级锁时保存在BasicLock对象的mark数据dhw;

3、通过CAS尝试把dhw替换到当前的Mark Word,如果CAS成功,说明成功的释放了锁,否则执行步骤(4);

4、如果CAS失败,说明有其它线程在尝试获取该锁,这时需要将该锁升级为重量级锁,并释放;

重量级锁

重量级锁通过对象内部的监视器(monitor)实现,其中monitor的本质是依赖于底层操作系统的Mutex Lock实现,操作系统实现线程之间的切换需要从用户态到内核态的切换,切换成本非常高。

锁膨胀过程

锁的膨胀过程通过ObjectSynchronizer::inflate函数实现

膨胀过程的实现比较复杂,截图中只是一小部分逻辑,完整的方法可以查看synchronized.cpp,大概实现过程如下:

1、整个膨胀过程在自旋下完成;

2、mark->has_monitor()方法判断当前是否为重量级锁,即Mark Word的锁标识位为 10,如果当前状态为重量级锁,执行步骤(3),否则执行步骤(4);

3、mark->monitor()方法获取指向ObjectMonitor的指针,并返回,说明膨胀过程已经完成;

4、如果当前锁处于膨胀中,说明该锁正http://在被其它线程执行膨胀操作,则当前线程就进行自旋等待锁膨胀完成,这里需要注意一点,虽然是自旋操作,但不会一直占用cpu资源,每隔一段时间会通过os::NakedYield方法放弃cpu资源,或通过park方法挂起;如果其他线程完成锁的膨胀操作,则退出自旋并返回;

5、如果当前是轻量级锁状态,即锁标识位为 00,膨胀过程如下:

1、通过omAlloc方法,获取一个可用的ObjectMonitor monitor,并重置monitor数据;

2、通过CAS尝试将Mark Word设置为markOopDesc:INFLATING,标识当前锁正在膨胀中,如果CAS失败,说明同一时刻其它线程已经将Mark Word设置为markOopDesc:INFLATING,当前线程进行自旋等待膨胀完成;

3、如果CAS成功,设置monitor的各个字段:_header、_owner和_object等,并返回;

monitor竞争

当锁膨胀完成并返回对应的monitor时,并不表示该线程竞争到了锁,真正的锁竞争发生在ObjectMonitor::enter方法中。

1、通过CAS尝试把monitor的_owner字段设置为当前线程;

2、如果设置之前的_owner指向当前线程,说明当前线程再次进入monitor,即重入锁,执行_recursions ++ ,记录重入的次数;

3、如果之前的_owner指向的地址在当前线程中,这种描述有点拗口,换一种说法:之前_owner指向的BasicLock在当前线程栈上,说明当前线程是第一次进入该monitor,设置_recursions为1,_owner为当前线程,该线程成功获得锁并返回;

4、如果获取锁失败,则等待锁的释放;

monitor等待

monitor竞争失败的线程,通过自旋执行ObjectMonitor::EnterI方法等待锁的释放,EnterI方法的部分逻辑实现如下:

1、当前线程被封装成ObjectWaiter对象node,状态设置成ObjectWaiter::TS_CXQ;

2、在for循环中,通过CAS把node节点push到_cxq列表中,同一时刻可能有多个线程把自己的node节点push到_cxq列表中;

3、node节点push到_cxq列表之后,通过自旋尝试获取锁,如果还是没有获取到锁,则通过park将当前线程挂起,等待被唤醒,实现如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Z84eXtzV-1571562703110)(https://uploadfiles.nowcoder.com/files/20191020/5088755_1571562670865_4685968-e797fdcdc32a2f8e.png)]

4、当该线程被唤醒时,会从挂起的点继续执行,通过ObjectMonitor::TryLock尝试获取锁,TryLock方法实现如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sJC8vMmz-1571562703111)(https://uploadfiles.nowcoder.com/files/20191020/5088755_1571562670568_4685968-17d10b24c3369844.png)]

其本质就是通过CAS设置monitor的_owner字段为当前线程,如果CAS成功,则表示该线程获取了锁,跳出自旋操作,执行同步代码,否则继续被挂起;

monitor释放

当某个持有锁的线程执行完同步代码块时,会进行锁的释放,给其它线程机会执行同步代码,在HotSpot中,通过退出monitor的方式实现锁的释放,并通知被阻塞的线程,具体实现位于ObjectMonitor::exit方法中。

1、如果是重量级锁的释放,monitor中的_owner指向当前线程,即THREAD == _owner;

2、根据不同的策略(由QMode指定),从cxq或EntryList中获取头节点,通过ObjectMonitor::ExitEpilog方法唤醒该节点封装的线程,唤醒操作最终由unpark完成,实现如下:

void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {

assert(_owner == Self, "invariant");

// Exit protocol:

// 1. ST _succ = wakee

// 2. membar #loadstore|#storestore;

// 2. ST _owner = NULL

// 3. unpark(wakee)

_succ = Wakee->_thread;

ParkEvent * Trigger = Wakee->_event;

// Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.

// The thread associated with Wakee may have grabbed the lock and "Wakee" may be

// out-of-scope (non-extant).

Wakee = NULL;

// Drop the lock

OrderAccess::release_store(&_owner, (void*)NULL);

OrderAccess::fence(); // ST _owner vs LD in unpark()

DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);

Trigger->unpark();

// Maintain stats and report events to JVMTI

OM_PERFDATA_OP(Parks, inc());

}

3、被唤醒的线程,继续执行monitor的竞争;

总结


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:金融行业常见的网络攻击类型
下一篇:如何判断业务是否遭到DDoS攻击?DDoS攻击会造成哪些危害?(针对ddos攻击可采用什么措施)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~