Gointerface接口声明实现及作用详解
172
2022-10-05
Java中常见的并发控制手段浅析
目录前言1.1 同步代码块1.2 CAS自旋方式1.3 锁1.4 阻塞队列1.5 信号量Semaphore1.6 计数器CountDownLatch1.7 栅栏 CyclicBarrier1.8 guava令牌桶1.9 滑动窗口TimeWindow1.10 小结
前言
单实例的并发控制,主要是针对JVM内,我们常规的手段即可满足需求,常见的手段大概有下面这些
同步代码块
CAS自旋
锁
阻塞队列,令牌桶等
1.1 同步代码块
通过同步代码块,来确保同一时刻只会有一个线程执行对应的业务逻辑,常见的使用姿势如下
public synchronized doProcess() {
// 同步代码块,只会有一个线程执行
}
一般推荐使用最小区间使用原则,尽量不要直接在方法上加synchronized,比如经典的双重判定单例模式
public class Single {
private static volatile Single instance;
private Single() {}
public static Single getInstance() {
if (instance == null) {
synchronized(Single.class) {
if (instance == null) instance = new Single();
}
}
return instance;
}
}
1.2 CAS自旋方式
比如AtomicXXX原子类中的很多实现,就是借助unsafe的CAS来实现的,如下
public final int getAndIncrement() {
return unsafe.getAndAddInt(this, valueOffset, 1);
}
// unsafe 实现
// cas + 自选,不断的尝试更新设置,直到成功为止
public final int getAndAddInt(Object var1, long var2, int var4) {
int var5;
do {
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
return var5;
}
1.3 锁
jdk本身提供了不少的锁,为了实现单实例的并发控制,我们需要选择写锁;如果支持多读,单实例写,则可以考虑读写锁;一般使用姿势也比较简单
private void doSome(ReentrantReadWriteLock.WriteLock writeLock) {
try {
writeLock.lock();
System.out.println("持有锁成功 " + Thread.currentThread().getName());
Thread.sleep(1000);
System.out.println("执行完毕! " + Thread.currentThread().getName());
writeLock.unlock();
} catch (Exception e) {
e.printStackTrace();
}
}
@Test
public void lock() throws InterruptedException {
ReentrantReadWriteLock reentrantReadWriteLock = new ReentrantReadWriteLock();
new Thread(()->doSome(reentrantReadWriteLock.writeLock())).start();
new Thread(()->doSome(reentrantReadWriteLock.writeLock())).start();
new Thread(()->doSome(reentrantReadWriteLock.writeLock())).start();
Thread.sleep(20000);
}
1.4 阻塞队列
借助同步阻塞队列,也可以实现并发控制的效果,比如队列中初始化n个元素,每次消费从队列中获取一个元素,如果拿不到则阻塞;执行完毕之后,重新塞入一个元素,这样就可以实现一个简单版的并发控制
demo版演示,下面指定队列长度为2,表示最大并发数控制为2;设置为1时,可以实现单线程的访问控制
AtomicInteger cnt = new AtomicInteger();
private void consumer(LinkedBlockingQueue
try {
// 同步阻塞拿去数据
int val = queue.take();
Thread.sleep(2000);
System.out.println("成功拿到: " + val + " Thread: " + Thread.currentThread());
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
// 添加数据
System.out.println("结束 " + Thread.currentThread());
queue.offer(cnt.getAndAdd(1));
}
}
@Test
public void blockQueue() throws InterruptedException {
LinkedBlockingQueue
queue.add(cnt.getAndAdd(1));
queue.add(cnt.getAndAdd(1));
new Thread(() -> consumer(queue)).start();
new Thread(() -> consumer(queue)).start();
new Thread(() -> consumer(queue)).start();
new Thread(() -> consumer(queue)).start();
Thread.sleep(10000);
}
1.5 信号量Semaphore
上面队列的实现方式,可以使用信号量Semaphore来完成,通过设置信号量,来控制并发数
private void semConsumer(Semaphore semaphore) {
try {
//同步阻塞,尝试获取信号
semaphore.acquire(1);
System.out.println("成功拿到信号,执行: " + Thread.currentThread());
Thread.sleep(2000);
System.out.println("执行完毕,释放信号: " + Thread.currentThread());
semaphore.release(1);
} catch (Exception e) {
e.printStackTrace();
}
}
@Test
public void semaphore() throws InterruptedException {
Semaphore semaphore = new Semaphore(2);
new Thread(() -> semConsumer(semaphore)).start();
new Thread(() -> semConsumer(semaphore)).start();
new Thread(() -> semConsumer(semaphore)).start();
new Thread(() -> semConsumer(semaphore)).start();
new Thread(() -> semConsumer(semaphore)).start();
Thread.sleep(20_000);
}
1.6 计数器CountDownLatch
计数,应用场景更偏向于多线程的协同,比如多个线程执行完毕之后,再处理某些事情;不同于上面的并发数的控制,它和栅栏一样,更多的是行为结果的统一
这种场景下的使用姿势一般如下
重点:countDownLatch 计数为0时放行
@Test
public void countDown() throws InterruptedException {
CountDownLatch countDownLatch = new CountDownLatch(2);
new Thread(() -> {
try {
System.out.println("do something in " + Thread.currentThread());
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
countDownLatch.countDown();
}
}).start();
new Thread(() -> {
try {
System.out.println("do something in t2: " + Thread.currentThread());
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
countDownLatch.countDown();
}
}).start();
countDownLatch.await();
System.out.printf("结束");
}
1.7 栅栏 CyclicBarrier
CyclicBarrier的作用与上面的CountDownLatch相似,区别在于正向计数+1, 只有达到条件才放行; 且支持通过调用reset()重置计数,而CountDownLatch则不行
一个简单的demo
private void cyclicBarrierLogic(CyclicBarrier barrier, long sleep) {
// 等待达到条件才放行
try {
System.out.println("准备执行: " + Thread.currentThread() + " at: " + LocalDateTime.now());
Thread.sleep(sleep);
int index = barrier.await();
System.out.println("开始执行: " + index + " thread: " + Thread.currentThread() + " at: " + LocalDateTime.now());
} catch (Exception e) {
e.printStackTrace();
}
}
@Test
public void testCyclicBarrier() throws InterruptedException {
// 到达两个工作线程才能继续往后面执行
CyclicBarrier barrier = new CyclicBarrier(2);
// 三秒之后,下面两个线程的才会输出 开始执行
new Thread(() -> cyclicBarrierLogic(barrier, 1000)).start();
new Thread(() -> cyclicBarrierLogic(barrier, 3000)).start();
Thread.sleep(4000);
// 重置,可以再次使用
barrier.reset();
new Thread(() -> cyclicBarrierLogic(barrier, 1)).start();
new Thread(() -> cyclicBarrierLogic(barrier, 1)).start();
Thread.sleep(10000);
}
1.8 guava令牌桶
guava封装了非常简单的并发控制工具类RateLimiter,作为单机的并发控制首选
一个控制qps为2的简单demo如下:
private void guavaProcess(RateLimiter rateLimiter) {
try {
// 同步阻塞方式获取
System.out.println("准备执行: " + Thread.currentThread() + " > " + LocalDateTime.now());
rateLimiter.acquire();
System.out.println("执行中: " + Thread.currentThread() + " > " + LocalDateTime.now());
} catch (Exception e) {
e.printStackTrace();
}
}
@Test
public void testGuavaRate() throws InterruptedException {
// 1s 中放行两个请求
RateLimiter rateLimiter = RateLimiter.create(2.0d);
new Thread(() -> guavaProcess(rateLimiter)).start();
new Thread(() -> guavaProcess(rateLimiter)).start();
new Thread(() -> guavaProcess(rateLimiter)).start();
new Thread(() -> guavaProcess(rateLimiter)).start();
new Thread(() -> guavaProcess(rateLimiter)).start();
new Thread(() -> guavaProcess(rateLimiter)).start();
new Thread(() -> guavaProcess(rateLimiter)).start();
Thread.sleep(20_000);
}
输出:
准备执行: Thread[Thread-2,5,main] > 2021-04-13T10:18:05.263
准备执行: Thread[Thread-1,5,main] > 2021-04-13T10:18:05.263
准备执行: Thread[Thread-5,5,main] > 2021-04-13T10:18:05.264
准备执行: Thread[Thread-7,5,main] > 2021-04-13T10:18:05.264
准备执行: Thread[Thread-3,5,main] > 2021-04-13T10:18:05.263
准备执行: Thread[Thread-4,5,main] > 2021-04-13T10:18:05.264
准备执行: Thread[Thread-6,5,main] > 2021-04-13T10:18:05.263
执行中: Thread[Thread-2,5,main] > 2021-04-13T10:18:05.267
执行中: Thread[Thread-6,5,main] > 2021-04-13T10:18:05.722
执行中: Thread[Thread-4,5,main] > 2021-04-13T10:18:06.225
执行中: Thread[Thread-3,5,main] > 2021-04-13T10:18:06.721
执行中: Thread[Thread-7,5,main] > 2021-04-13T10:18:07.221
执行中: Thread[Thread-5,5,main] > 2021-04-13T10:18:07.720
执行中: Thread[Thread-1,5,main] > 2021-04-13T10:18:08.219
1.9 滑动窗口TimeWindow
没有找到通用的滑动窗口jar包,一般来讲滑动窗口更适用于平滑的限流,解决瞬时高峰问题
一个供参考的实现方式:
固定大小队列,队列中每个数据代表一个时间段的计数,
访问 -》 队列头拿数据(注意不出队)-》判断是否跨时间段 -》 同一时间段,计数+1 -》跨时间段,新增数据入队,若
扔不进去,表示时间窗满,队尾数据出队
问题:当流量稀疏时,导致不会自动释放过期的数据
解决方案:根据时间段设置定时任务,模拟访问操作,只是将计数改为 + 0
1.10 小结
本文给出了几种单机版的并发控制的技术手段,主要目的是介绍了一些可选的方案,技术细节待后续补全完善,当然如果有其他的建议,欢迎评论交流
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~