构建数据相似系统(系统相似性)

网友投稿 269 2022-10-07


构建数据相似系统(系统相似性)

一、基于共享码片构建(难度高)

经调研,没有开源工具可以做共享代码构建,如Bindiff可以分析两个样本之间相似阈值和代码可视化,接口可以批量对样本进行相似分析,但仍是两个样本之间关联,无法做到多样本关联。

共享代码定义:完整的反汇编(过滤系统API汇编代码),意图只保留病毒本身汇编(跟系统和其它无关),使用算法切割(类似于Minhash这种切割)。

应用价值:

用法一:提取不同家族共享代码,通过算法产出代码聚类和结论,关联不同组织代码共性,完善情报分析(目前很多国外情报和安全公司使用的方法之一)。

用法二:以不同家族为主节点,通过代码片段构建共享代码相似系统(匹配搜索系统)。

用法三:共享代码数据可以提供给算法团队(如果他们有需求),用于数据建模和数据挖掘。

二、基于MInhash构建(难度折中)

先尝试PE格式,如sys,dll,exe计算不同类型的Minhash,或直接构建样本集总Minhash。

应用价值:

用法一:设置阈值大于0.8为相似样本,借助BinDiff批量对比筛选或人工根据文件类型对比,分析共享代码,完善情报分析。emsp;Hellsing和APT15之间效果图(100以内样本):

#!/usr/bin/python import argparse import os import murmur import shelve import sys from numpy import * from listing_5_1 import * NUM_MINHASHES = 256 NUM_SKETCHES = 8 def wipe_database(): dbpath = "/".join(__file__.split('/')[:-1] + ['samples.db']) os.system("rm -f {0}".format(dbpath)) def get_database(): dbpath = "/".join(__file__.split('/')[:-1] + ['samples.db']) return shelve.open(dbpath,protocol=2,writeback=True) def minhash(attributes): minhashes = [] sketches = [] for i in range(NUM_MINHASHES): minhashes.append( min([murmur.string_hash(`attribute`,i) for attribute in attributes]) ) for i in xrange(0,NUM_MINHASHES,NUM_SKETCHES): sketch = murmur.string_hash(`minhashes[i:i+NUM_SKETCHES]`) sketches.append(sketch) return array(minhashes),sketches def store_sampledirectories(DirectPath): for root, dirs, paths in os.walk(DirectPath): for path in paths: db = get_database() attributes = getstrings(path) minhashes,sketches = minhash(attributes) neighbors = [] for sketch in sketches: sketch = str(sketch) if not sketch in db: continue for neighbor_path in db[sketch]: neighbor_minhashes = db[neighbor_path]['minhashes'] similarity = (neighbor_minhashes == minhashes).sum() / float(NUM_MINHASHES) neighbors.append((neighbor_path,similarity)) neighbors = list(set(neighbors)) neighbors.sort(key=lambda entry:entry[1],reverse=True) print "" print "Sample name".ljust(64),"Shared code estimate" for neighbor, similarity in neighbors: short_neighbor = neighbor.split("/")[-1] comments = db[neighbor]['comments'] print str("[*] "+short_neighbor).ljust(64),similarity for comment in comments: print "\t[comment]",comment def store_sample(path): db = get_database() attributes = getstrings(path) minhashes,sketches = minhash(attributes) for sketch in sketches: sketch = str(sketch) if not sketch in db: db[sketch] = set([path]) else: obj = db[sketch] obj.add(path) db[sketch] = obj db[path] = {'minhashes':minhashes,'comments':[]} db.sync() print "Extracted {0} attributes from {1} ...".format(len(attributes),path) def comment_sample(path): db = get_database() comment = raw_input("Enter your comment:") if not path in db: store_sample(path) comments = db[path]['comments'] comments.append(comment) db[path]['comments'] = comments db.sync() print "Stored comment:",comment def search_sample(path): db = get_database() attributes = getstrings(path) minhashes,sketches = minhash(attributes) neighbors = [] for sketch in sketches: sketch = str(sketch) if not sketch in db: continue for neighbor_path in db[sketch]: neighbor_minhashes = db[neighbor_path]['minhashes'] similarity = (neighbor_minhashes == minhashes).sum() / float(NUM_MINHASHES) neighbors.append((neighbor_path,similarity)) neighbors = list(set(neighbors)) neighbors.sort(key=lambda entry:entry[1],reverse=True) print "" print "Sample name".ljust(64),"Shared code estimate" for neighbor, similarity in neighbors: short_neighbor = neighbor.split("/")[-1] comments = db[neighbor]['comments'] print str("[*] "+short_neighbor).ljust(64),similarity for comment in comments: print "\t[comment]",comment if __name__ == '__main__': parser = argparse.ArgumentParser( description=""" Simple code-sharing search system which allows you to build up a database of malware samples (indexed by file paths) and then search for similar samples given some new sample """ ) parser.add_argument( "-l","--load",dest="load",default=None, help="Path to directory containing malware, or individual malware file, to store in database" ) parser.add_argument( "-s","--search",dest="search",default=None, help="Individual malware file to perform similarity search on" ) parser.add_argument( "-c","--comment",dest="comment",default=None, help="Comment on a malware sample path" ) parser.add_argument( "-w","--wipe",action="store_true",default=False, help="Wipe sample database" ) parser.add_argument( "-sd","--searchdir",dest="searchdir",default=None, help="Input Other APT VirusDirectior,Filter hit" ) args = parser.parse_args() if len(sys.argv) == 1: parser.print_help() if args.load: malware_paths = [] # where we'll store the malware file paths malware_attributes = dict() # where we'll store the malware strings for root, dirs, paths in os.walk(args.load): # walk the target directory tree and store all of the file paths for path in paths: full_path = os.path.join(root,path) malware_paths.append(full_path) # filter out any paths that aren't PE files malware_paths = filter(pecheck, malware_paths) # get and store the strings for all of the malware PE files for path in malware_paths: store_sample(path) if args.search: search_sample(args.search) if args.searchdir: store_sampledirectories(args.searchdir) if args.comment: comment_sample(args.comment) if args.wipe: wipe_database()

三、基于其它”特征袋“构建(难度低-不使用)

问题(针对PE/ELF): 问题一:PE/ELF都会涉及加壳。 解决方案:压缩壳/有通用第三方脱壳工具可以调用接口脱壳,IAT加密/混淆/强壳直接丢弃(不参与Minhash计算和共享代码提取)。 问题二:MinHash算法是成熟/相对可靠,共享代码需要克服。 解决方案:自主实现,算法用成熟的python库尝试,通过优化不断提升。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:手把手教你实现Java第三方应用登录
下一篇:OpCode使用N-gram归一化实践
相关文章

 发表评论

暂时没有评论,来抢沙发吧~