多平台统一管理软件接口,如何实现多平台统一管理软件接口
249
2022-10-13
新手初学Java常见排序算法
目录1、冒泡排序2、选择排序3、简单插入排序4、希尔排序5、归并排序6、快速排序总结
1、冒泡排序
排序原理:相邻两个元素比较,如果前者比后者大,则交换两个元素。每执行一次,都会确定一个最大值,其位置就固定了,下一次就不需要再参与排序了。
时间复杂度:O(n^2)
稳定性:稳定
具体实现:
public class Bubble {
/**
* 对数组a中的元素进行排序
*/
public static void sort(Comparable[] a){
//每冒泡一次,参与冒泡排序的元素个数就少一个
//需要排序的次数为数组个数减一
/*for (int i=a.length-1; i>0; i--){
for (int j=0; j
if (greater(a[j],a[j+1])){
exch(a, j,j+1);
}
}
}*/
for (int i=0; i for (int j=0; j if (greater(a[j],a[j+1])){ exch(a, j,j+1); } } } } /** * 比较u元素是否大于v元素 */ private static boolean greater(Comparable u, Comparable v){ return u.compareTo(v) > 0; } /** * 交换数组下标为i和j的元素的位置 */ private static void exch(Comparabhttp://le[] a, int i, int j){ Comparable temp; temp = a[i]; a[i] = a[j]; a[j] = temp; } /** * 测试 */ public static void main(String[] args) { Integer[] a = {8, 5, 7, 4, 3, 2, 6}; sort(a); System.out.println(Arrays.toString(a)); } } 优化:可以加一个标志位,当冒泡一次也没有执行的时候,就说明已经排好了,就不需要再冒泡了。 2、选择排序 排序原理:从数组中找出最小值的下标,然后将最小值交换到前边。每执行一次前边就会有一个最小值位置固定,之后就不再需要参与查找最小值了。 时间复杂度:O(n^2) 稳定性:不稳定 具体实现: public class Selelction { /** * 将数组排序 * @param a 待排序的数组 */ public static void sort(Comparable[] a){ for (int i=0; i //找出最小的值 int minIndex = i; //注意这里不需要减一 for (int j=i+1; j //Comparable数组 不能直接用下标比较大小 if (greater(a[minIndex],a[j])){ minIndex = j; } } //交换 if (minIndex != i){ exch(a, minIndex, i); } } } /** * 比较第一个参数是否大于第二个参数 * @param a * @param b * @return 第一个参数是否大于第二个参数 */ private static boolean greater(Comparable a, Comparable b){ return a.compareTo(b) > 0; } /** * 交换数组的两个元素 * @param a 数组 * @param i 数组下标 * @param j 数组下标 */ private static void exch(Comparable[] a, int i, int j){ Comparable temp; temp = a[i]; a[i] = a[j]; a[j] = temp; } /** * 测试方法 * @param args */ public static void main(String[] args) { Integer[] array = {1,6,7,3,2,5,7,8,4,0,5,3,7}; sort(array); System.out.println(Arrays.toString(array)); } 3、简单插入排序 排序原理:将数组分成两组,左边一组是已排序的,右边一组是未排序的,然后拿未排序的第一个与左边的从后往前比较,如果比前边的小就交换,直到前边的值比它小或者等于它。 时间复杂度:O(n^2) 稳定性:稳定 具体实现: public class Insertion { /** * 对数组a中的元素进行排序 */ public static void sort(Comparable[] a){ for (int i = 1; i < a.length; i++) { for (int j = i; j > 0; j--){ if (greater(a[j-1],a[j])){ exch(a, j-1, j); }else { break; } } } } /** * 比较u元素是否大于v元素 */ private static boolean greater(Comparable u, Comparable v){ return u.compareTo(v) > 0; } /** * 交换数组下标为i和j的元素的位置 */ private static void exch(Comparable[] a, int i, int j){ Comparable temp; temp = a[i]; a[i] = a[j]; a[j] = temp; } /** * 测试 */ public static void main(String[] args) { Integer[] a = {8, 5, 7, 4, 3, 2, 6, 8}; sort(a); System.out.println(Arrays.toString(a)); } } 优化思路:将要插入的数先保存起来,然后交换的代码就可以改成覆盖,就相当于后移,等找到合适位置再把之前保存的值放进去。 4、希尔排序 排序原理:是插入排序的优化版,插入排序在比较时只能一个一个比较,而希尔排序中加了一个增长量,可以跨元素比较,相对减少了比较交换的次数。 时间复杂度:O(n^1.3) 稳定性:不稳定 具体实现: public class Shell { /** * 将数组排序 * @param a 待排序的数组 * @return 排好序的数组 */ public static void sort(Comparable[] a){ //1.确定增长量h的值 int h=1; while(h < a.length/2){ h = h*2+1; } //2.进行排序 while(h>=1){ //找到待排序的第一个值 for (int i=h; i for (int j=i; j>=h; j-=h){ if (greater(a[j-h],a[j])){ exch(a, j, j-h); }else{ break; } } } //h减小 h/=2; } } /** * 比较u元素是否大于v元素 */ private static boolean greater(Comparable u, Comparable v){ return u.compareTo(v) > 0; } /** * 交换数组下标为i和j的元素的位置 */ prIfkfOlivate static void exch(Comparable[] a, int i, int j){ Comparable temp; temp = a[i]; a[i] = a[j]; a[j] = temp; } //测试数据 public static void main(String[] args) { Integer[] a = {8, 5, 7, 4, 3, 2, 6, 8, 6, 7}; sort(a); System.out.println(Arrays.toString(a)); } } 5、归并排序 排序原理:使用了递归的思想,先把数组从中间递归分解,接着先排序左边的子数组,然后再排序右边的子数组,最后合并为一个数组。核心方法是merge方法。 时间复杂度:O(nlogn) 稳定性:稳定 具体实现: public class Merge { /** * 辅助数组 */ private static Comparable[] access; /** * 对数组a进行排序 * @param a */ public static void sort(Comparable[] a){ //1.初始化辅助数组 access = new Comparable[a.length]; //2.定义两个下标值 int lo = 0; int hi = a.length -1; //3.调用分组排序函数 sort(a, lo, hi); } /** * 对数组a中的lo到hi进行排序 * @param a * @param lo * @param hi */ private static void sort(Comparable[] a, int lo, int hi){ //保护 if (hi <= lo){ return; } //1.得到mid int mid = lo + (hi-lo)/2; //2.对左数组分组排序 sort(a, lo, mid); //3.对右数组分组排序 sort(a, mid+1, hi); //4.将两个数组合并 merge(a, lo, mid, hi); } /** * 将两个数组进行排序合并 * @param a * @param lo * @param mid * @param hi */ private static void merge(Comparable[] a, int lo, int mid, int hi){ //1.定义三个指针 int i=lo; int p1=lo; int p2=mid+1; //2.分别遍历两个子数组,直到有一个数组遍历完毕 while (p1 <= mid && p2 <= hi){ if (less(a[p1], a[p2])){ access[i++] = a[p1++]; }else{ access[i++] = a[p2++]; } } //3。将剩下的一个数组的剩余值放到辅助数组中 while(p1 <= mid){ access[i++] = a[p1++]; } while(p2 <= hi){ access[i++] = a[p2++]; } //4。将辅助数组中的值覆盖到原数组中 for (int index=lo; index<=hi; index++){ a[index] = access[index]; } } /** * 比较第一个下标的值是不是小于第二个下标的值 * @param u * @param v * @return */ private static boolean less(Comparable u, Comparable v){ return u.compareTo(v) <= 0; } /** * 测试 */ public static void main(String[] args) { Integer[] a = {8, 5, 7, 4, 3, 2, 6, 8}; sort(a); System.out.println(Arrays.toString(a)); } } 6、快速排序 排序原理:把数组的第一个值设置为中间值,比中间值小的放到左边,比中间值大的放到右边。然后再对左边的做相同的操作,最后是对右边的做相同的操作。核心方法是partition方法,将小的数移到左边,大的数移到右边,最后返回中间值的下标。 时间复杂度:O(nlogn) 稳定性:不稳定 具体实现: public class Quick { /** http:// * 对数组a进行排序 * @param a */ public static void sort(Comparable[] a){ int lo = 0; int hi = a.length-1; sort(a, lo, hi); } /** * 对数组a中的lo到hi进行排序 * @param a * @param lo * @param hi */ private static void sort(Comparable[] a, int lo, int hi){ //保护 if (hi <= lo){ return; } //获取中间值 int mid = partition(a, lo, hi); //对左子数组进行排序 sort(a, lo, mid-1); //对右子数组进行排序 sort(a, mid+1, hi); } /** * 将比子数组中第一个值小的数放到其左边,大于的放到右边,最后返回中间值的下标 * @param a * @param lo * @param hi * @return */ private static int partition(Comparable[] a, int lo, int hi){ //1.定义两个指针 int p1= lo; int p2 = hi+1; while (true){ //2.先移动右指针,找到第一个小于标准值的数 while(less(a[lo],a[--p2])){ if (p2 == lo){ break; } } //3.移动左指针,找到第一个大于标准值的数 while(less(a[++p1],a[lo])){ if (p1 == hi){ break; } } if (p1 >= p2){ //5.退出循环 break; }else { //4.交换两个值 exch(a, p1, p2); } } //6.最后把子数组的第一个值和右指针所指的值交换,最后返回其下标 exch(a, lo, p2); return p2; } /** * 比较第一个下标的值是不是小于第二个下标的值 * @param u * @param v * @return */ private static boolean less(Comparable u, Comparable v){ return u.compareTo(v) < 0; } /** * 交换数组中两个下标的值 * @param a * @param i * @param j */ private static void exch(Comparable[] a, int i, int j){ Comparable temp; temp = a[i]; a[i] = a[j]; a[j] = temp; } /** * 测试 */ public static void main(String[] args) { Integer[] a = {8, 5, 7, 4, 3, 2, 6, 8}; sort(a); System.out.println(Arrays.toString(a)); } } 总结 本篇文章就到这里了,希望能给你您带来帮助,也希望您能够多多关注我们的更多内容!
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~