多平台统一管理软件接口,如何实现多平台统一管理软件接口
239
2022-10-18
二叉搜索树操作集锦
通过之前的文章框架思维,二叉树的遍历框架应该已经印到你的脑子里了,这篇文章就来实操一下,看看框架思维是怎么灵活运用,秒杀一切二叉树问题的。
二叉树算法的设计的总路线:明确一个节点要做的事情,然后剩下的事抛给框架。
void traverse(TreeNode root) { // root 需要做什么?在这做。 // 其他的不用 root 操心,抛给框架 traverse(root.left); traverse(root.right); }
举两个简单的例子体会一下这个思路,热热身。
1. 如何把二叉树所有的节点中的值加一?
void plusOne(TreeNode root) { if (root == null) return; root.val += 1; plusOne(root.left); plusOne(root.right); }
2. 如何判断两棵二叉树是否完全相同?
boolean isSameTree(TreeNode root1, TreeNode root2) { // 都为空的话,显然相同 if (root1 == null && root2 == null) return true; // 一个为空,一个非空,显然不同 if (root1 == null || root2 == null) return false; // 两个都非空,但 val 不一样也不行 if (root1.val != root2.val) return false; // root1 和 root2 该比的都比完了 return isSameTree(root1.left, root2.left) && isSameTree(root1.right, root2.right); }
借助框架,上面这两个例子不难理解吧?如果可以理解,那么所有二叉树算法你都能解决。
二叉搜索树(Binary Search Tree,简称 BST)是一种很常用的的二叉树。它的定义是:一个二叉树中,任意节点的值要大于等于左子树所有节点的值,且要小于等于右边子树的所有节点的值。
如下就是一个符合定义的 BST:
下面实现 BST 的基础操作:判断 BST 的合法性、增、删、查。其中“删”和“判断合法性”略微复杂。
零、判断 BST 的合法性
这里是有坑的哦,我们按照刚才的思路,每个节点自己要做的事不就是比较自己和左右孩子吗?看起来应该这样写代码:
boolean isValidBST(TreeNode root) { if (root == null) return true; if (root.left != null && root.val <= root.left.val) return false; if (root.right != null && root.val >= root.right.val) return false; return isValidBST(root.left) && isValidBST(root.right); }
但是这个算法出现了错误,BST 的每个节点应该要小于右边子树的所有节点,下面这个二叉树显然不是 BST,但是我们的算法会把它判定为 BST。
出现错误,不要慌张,框架没有错,一定是某个细节问题没注意到。我们重新看一下 BST 的定义,root 需要做的不只是和左右子节点比较,而是要整个左子树和右子树所有节点比较。怎么办,鞭长莫及啊!
这种情况,我们可以使用辅助函数,增加函数参数列表,在参数中携带额外信息,请看正确的代码:
boolean isValidBST(TreeNode root) { return isValidBST(root, null, null); } boolean isValidBST(TreeNode root, TreeNode min, TreeNode max) { if (root == null) return true; if (min != null && root.val <= min.val) return false; if (max != null && root.val >= max.val) return false; return isValidBST(root.left, min, root) && isValidBST(root.right, root, max); }
一、在 BST 中查找一个数是否存在
根据我们的指导思想,可以这样写代码:
boolean isInBST(TreeNode root, int target) { if (root == null) return false; if (root.val == target) return true; return isInBST(root.left, target) || isInBST(root.right, target); }
这样写完全正确,充分证明了你的框架性思维已经养成。现在你可以考虑一点细节问题了:如何充分利用信息,把 BST 这个“左小右大”的特性用上?
很简单,其实不需要递归地搜索两边,类似二分查找思想,根据 target 和 root.val 的大小比较,就能排除一边。我们把上面的思路稍稍改动:
boolean isInBST(TreeNode root, int target) { if (root == null) return false; if (root.val == target) return true; if (root.val < target) return isInBST(root.right, target); if (root.val > target) return isInBST(root.left, target); // root 该做的事做完了,顺带把框架也完成了,妙 }
于是,我们对原始框架进行改造,抽象出一套针对 BST 的遍历框架:
void BST(TreeNode root, int target) { if (root.val == target) // 找到目标,做点什么 if (root.val < target) BST(root.right, target); if (root.val > target) BST(root.left, target); }
二、在 BST 中插入一个数
对数据结构的操作无非遍历 + 访问,遍历就是“找”,访问就是“改”。具体到这个问题,插入一个数,就是先找到插入位置,然后进行插入操作。
上一个问题,我们总结了 BST 中的遍历框架,就是“找”的问题。直接套框架,加上“改”的操作即可。一旦涉及“改”,函数就要返回 TreeNode 类型,并且对递归调用的返回值进行接收。
TreeNode insertIntoBST(TreeNode root, int val) { // 找到空位置插入新节点 if (root == null) return new TreeNode(val); // if (root.val == val) // BST 中一般不会插入已存在元素 if (root.val < val) root.right = insertIntoBST(root.right, val); if (root.val > val) root.left = insertIntoBST(root.left, val); return root; }
三、在 BST 中删除一个数
这个问题稍微复杂,不过你有框架指导,难不住你。跟插入操作类似,先“找”再“改”,先把框架写出来再说:
TreeNode deleteNode(TreeNode root, int key) { if (root.val == key) { // 找到啦,进行删除 } else if (root.val > key) { root.left = deleteNode(root.left, key); } else if (root.val < key) { root.right = deleteNode(root.right, key); } return root; }
找到目标节点了,比方说是节点 A,如何删除这个节点,这是难点。因为删除节点的同时不能破坏 BST 的性质。有三种情况,用图片来说明。
情况 1:A 恰好是末端节点,两个子节点都为空,那么它可以当场去世了。
图片来自 LeetCode
if (root.left == null && root.right == null) return null;
情况 2:A 只有一个非空子节点,那么它要让这个孩子接替自己的位置。
图片来自 LeetCode
// 排除了情况 1 之后 if (root.left == null) return root.right; if (root.right == null) return root.left;
情况 3:A 有两个子节点,麻烦了,为了不破坏 BST 的性质,A 必须找到左子树中最大的那个节点,或者右子树中最小的那个节点来接替自己。我们以第二种方式讲解。
图片来自 LeetCode
if (root.left != null && root.right != null) { // 找到右子树的最小节点 TreeNode minNode = getMin(root.right); // 把 root 改成 minNode root.val = minNode.val; // 转而去删除 minNode root.right = deleteNode(root.right, minNode.val); }
三种情况分析完毕,填入框架,简化一下代码:
TreeNode deleteNode(TreeNode root, int key) { if (root == null) return null; if (root.val == key) { // 这两个 if 把情况 1 和 2 都正确处理了 if (root.left == null) return root.right; if (root.right == null) return root.left; // 处理情况 3 TreeNode minNode = getMin(root.right); root.val = minNode.val; root.right = deleteNode(root.right, minNode.val); } else if (root.val > key) { root.left = deleteNode(root.left, key); } else if (root.val < key) { root.right = deleteNode(root.right, key); } return root; } TreeNode getMin(TreeNode node) { // BST 最左边的就是最小的 while (node.left != null) node = node.left; return node; }
删除操作就完成了。注意一下,这个删除操作并不完美,因为我们一般不会通过 root.val = minNode.val 修改节点内部的值来交换节点,而是通过一系列略微复杂的链表操作交换 root 和 minNode 两个节点。因为具体应用中,val 域可能会很大,修改起来很耗时,而链表操作无非改一改指针,而不会去碰内部数据。
但这里忽略这个细节,旨在突出 BST 基本操作的共性,以及借助框架逐层细化问题的思维方式。
四、最后总结
通过这篇文章,你学会了如下几个技巧:
二叉树算法设计的总路线:把当前节点要做的事做好,其他的交给递归框架,不用当前节点操心。如果当前节点会对下面的子节点有整体影响,可以通过辅助函数增长参数列表,借助参数传递信息。在二叉树框架之上,扩展出一套 BST 遍历框架:
void BST(TreeNode root, int target) { if (root.val == target) // 找到目标,做点什么 if (root.val < target) BST(root.right, target); if (root.val > target) BST(root.left, target); }
掌握了 BST 的基本操作。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~