java 单机接口限流处理方案
368
2022-10-18
详解Java如何实现小顶堆和大顶堆
大顶堆
每个结点的值都大于或等于其左右孩子结点的值
小顶堆
每个结点的值都小于或等于其左右孩子结点的值
对比图
实现代码
public class HeapNode{
private int size;//堆大小
private int[] heap;//保存堆数组
//初始化堆
public HeapNode(int n) {
heap = new int[n];
size = 0;
}
//小顶堆建堆
public void minInsert(int key){
int i = this.size;
if (i==0) heap[0] = key;
else {
while (i>0 && heap[i/2]>key){
heap[i] = heap[i/2];
i = i/2;
}
heap[i] = key;
}
this.size++;
}
//大顶堆建堆
public void maxInsert(int key){
int i = this.size;
if (i==0) heap[0] = key;
else {
while (i>0 && heap[i/2] heap[i] = heap[i/2]; i = i/2; } heap[i] = key; } this.size++; } //小顶堆删除 public int minDelete(){ if (this.size==0) return -1; int top = heap[0]; int last = heap[this.size-1]; heap[0] = last; this.size--; //堆化 minHeapify(0); return top; } //大顶堆删除 public int maxDelete(){ if (this.size==0) return -1; int top = heap[0]; int last = heap[this.size-1]; heap[0] = last; this.size--; //堆化 maxHeapify(0); return top; } //小顶堆化 public void minHeapify(int i){ int L = 2*i,R=2*i+1,min; if (L<=size && heap[L] < heap[i]) min = L; else min = i; if (R <= size && heap[R] < heap[min]) min = R; if (min!=i){ int t = heap[min]; heap[min] = heap[i]; heap[i] = t; minHeapify(min); } } //大顶堆化 public void maxHeapify(int i){ int L = 2*i,R=2*i+1,max; if (L<=size && heap[L] > heap[i]) max = L; else max = i; if (R <= size && heap[R] > heap[max]) max = R; if (max!=i){ int t = heap[max]; heap[max] = heap[i]; heap[i] = t; maxHeapify(max); } } //输出堆 public void print(){ for (int i = 0; i < this.size; i++) { System.out.print(heap[i]+" "); } System.out.println(); } } 测试 public class Heap { static int[] a = {5,3,6,4,2,1}; static int n = a.length; public static void main(String[] args){ HeapNode heapNode = new HeapNode(n); for (int i = 0; i < n; i++) { heapNode.maxInsert(a[i]); } heapNode.print(); for (int i = 0; i < n; i++) { int min = heapNode.maxDelete(); System.out.print("堆顶:"+min+" 剩下堆元素:"); heapNode.print(); } } } 结果
heap[i] = heap[i/2];
i = i/2;
}
heap[i] = key;
}
this.size++;
}
//小顶堆删除
public int minDelete(){
if (this.size==0) return -1;
int top = heap[0];
int last = heap[this.size-1];
heap[0] = last;
this.size--;
//堆化
minHeapify(0);
return top;
}
//大顶堆删除
public int maxDelete(){
if (this.size==0) return -1;
int top = heap[0];
int last = heap[this.size-1];
heap[0] = last;
this.size--;
//堆化
maxHeapify(0);
return top;
}
//小顶堆化
public void minHeapify(int i){
int L = 2*i,R=2*i+1,min;
if (L<=size && heap[L] < heap[i]) min = L;
else min = i;
if (R <= size && heap[R] < heap[min]) min = R;
if (min!=i){
int t = heap[min];
heap[min] = heap[i];
heap[i] = t;
minHeapify(min);
}
}
//大顶堆化
public void maxHeapify(int i){
int L = 2*i,R=2*i+1,max;
if (L<=size && heap[L] > heap[i]) max = L;
else max = i;
if (R <= size && heap[R] > heap[max]) max = R;
if (max!=i){
int t = heap[max];
heap[max] = heap[i];
heap[i] = t;
maxHeapify(max);
}
}
//输出堆
public void print(){
for (int i = 0; i < this.size; i++) {
System.out.print(heap[i]+" ");
}
System.out.println();
}
}
测试
public class Heap {
static int[] a = {5,3,6,4,2,1};
static int n = a.length;
public static void main(String[] args){
HeapNode heapNode = new HeapNode(n);
for (int i = 0; i < n; i++) {
heapNode.maxInsert(a[i]);
}
heapNode.print();
for (int i = 0; i < n; i++) {
int min = heapNode.maxDelete();
System.out.print("堆顶:"+min+" 剩下堆元素:");
heapNode.print();
}
}
}
结果
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~