零基础学并查集算法

网友投稿 233 2022-10-25


零基础学并查集算法

并查集是我暑假从高手那里学到的一招,觉得真是太精妙的设计了。以前我无法解决的一类问题竟然可以用如此简单高效的方法搞定。不分享出来真是对不起party了。(party:我靠,关我嘛事啊?我跟你很熟么?)

来看一个实例,杭电1232畅通工程

首先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的。最后要解决的是整幅图的连通性问题。比如随意给你两个点,让你判断它们是否连通,或者问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块。像畅通工程这题,问还需要修几条路,实质就是求有几个连通分支。如果是1个连通分支,说明整幅图上的点都连起来了,不用再修路了;如果是2个连通分支,则只要再修1条路,从两个分支中各选一个点,把它们连起来,那么所有的点都是连起来的了;如果是3个连通分支,则只要再修两条路……

以下面这组数据输入数据来说明

4 2 1 3 4 3

第一行告诉你,一共有4个点,2条路。下面两行告诉你,1、3之间有条路,4、3之间有条路。那么整幅图就被分成了1-3-4和2两部分。只要再加一条路,把2和其他任意一个点连起来,畅通工程就实现了,那么这个这组数据的输出结果就是1。好了,现在编程实现这个功能吧,城镇有几百个,路有不知道多少条,而且可能有回路。 这可如何是好?

我以前也不会呀,自从用了并查集之后,嗨,效果还真好!我们全家都用它!

并查集由一个整数型的数组和两个函数构成。数组pre[]记录了每个点的前导点是什么,函数find是查找,join是合并。

int pre[1000 ];

int find(int x)                                                                                                         //查找根节点

{

int r=x;

while ( pre[r ] != r )                                                                                              //返回根节点 r

r=pre[r ];

int i=x , j ;

while( i != r )                                                                                                        //路径压缩

{

j = pre[ i ]; // 在改变上级之前用临时变量  j 记录下他的值

pre[ i ]= r ; //把上级改为根节点

i=j;

}

return r ;

}

void join(int x,int y)                                                                                                    //判断x y是否连通,

//如果已经连通,就不用管了 //如果不连通,就把它们所在的连通分支合并起,

{

int fx=find(x),fy=find(y);

if(fx!=fy)

pre[fx ]=fy;

}

为了解释并查集的原理,我将举一个更有爱的例子。 话说江湖上散落着各式各样的大侠,有上千个之多。他们没有什么正当职业,整天背着剑在外面走来走去,碰到和自己不是一路人的,就免不了要打一架。但大侠们有一个优点就是讲义气,绝对不打自己的朋友。而且他们信奉“朋友的朋友就是我的朋友”,只要是能通过朋友关系串联起来的,不管拐了多少个弯,都认为是自己人。这样一来,江湖上就形成了一个一个的群落,通过两两之间的朋友关系串联起来。而不在同一个群落的人,无论如何都无法通过朋友关系连起来,于是就可以放心往死了打。但是两个原本互不相识的人,如何判断是否属于一个朋友圈呢?

我们可以在每个朋友圈内推举出一个比较有名望的人,作为该圈子的代表人物,这样,每个圈子就可以这样命名“齐达内朋友之队”“罗纳尔多朋友之队”……两人只要互相对一下自己的队长是不是同一个人,就可以确定敌友关系了。

但是还有问题啊,大侠们只知道自己直接的朋友是谁,很多人压根就不认识队长,要判断自己的队长是谁,只能漫无目的的通过朋友的朋友关系问下去:“你是不是队长?你是不是队长?”这样一来,队长面子上挂不住了,而且效率太低,还有可能陷入无限循环中。于是队长下令,重新组队。队内所有人实行分等级制度,形成树状结构,我队长就是根节点,下面分别是二级队员、三级队员。每个人只要记住自己的上级是谁就行了。遇到判断敌友的时候,只要一层层向上问,直到最高层,就可以在短时间内确定队长是谁了。由于我们关心的只是两个人之间是否连通,至于他们是如何连通的,以及每个圈子内部的结构是怎样的,甚至队长是谁,并不重要。所以我们可以放任队长随意重新组队,只要不搞错敌友关系就好了。于是,门派产生了。

int pre[1000]; 这个数组,记录了每个大侠的上级是谁。大侠们从1或者0开始编号(依据题意而定),pre[15]=3就表示15号大侠的上级是3号大侠。如果一个人的上级就是他自己,那说明他就是掌门人了,查找到此为止。也有孤家寡人自成一派的,比如欧阳锋,那么他的上级就是他自己。每个人都只认自己的上级。比如胡青牛同学只知道自己的上级是杨左使。张无忌是谁?不认识!要想知道自己的掌门是谁,只能一级级查上去。 find这个函数就是找掌门用的,意义再清楚不过了(路径压缩算法先不论,后面再说)。

int find(int x)                                                                  //查找我(x)的掌门

{

int r=x;                                                                       //委托 r 去找掌门

while (pre[r ]!=r)                                                        //如果r的上级不是r自己(也就是说找到的大侠他不是掌门 = =)

r=pre[r ] ;                                                                   // r 就接着找他的上级,直到找到掌门为止。

return  r ;                                                                   //掌门驾到~~~

}

再来看看join函数,就是在两个点之间连一条线,这样一来,原先它们所在的两个板块的所有点就都可以互通了。这在图上很好办,画条线就行了。但我们现在是用并查集来描述武林中的状况的,一共只有一个pre[]数组,该如何实现呢? 还是举江湖的例子,假设现在武林中的形势如图所示。虚竹小和尚与周芷若MM是我非常喜欢的两个人物,他们的终极boss分别是玄慈方丈和灭绝师太,那明显就是两个阵营了。我不希望他们互相打架,就对他俩说:“你们两位拉拉勾,做好朋友吧。”他们看在我的面子上,同意了。这一同意可非同小可,整个少林和峨眉派的人就不能打架了。这么重大的变化,可如何实现呀,要改动多少地方?其实非常简单,我对玄慈方丈说:“大师,麻烦你把你的上级改为灭绝师太吧。这样一来,两派原先的所有人员的终极boss都是师太,那还打个球啊!反正我们关心的只是连通性,门派内部的结构不要紧的。”玄慈一听肯定火大了:“我靠,凭什么是我变成她手下呀,怎么不反过来?我抗议!”抗议无效,上天安排的,最大。反正谁加入谁效果是一样的,我就随手指定了一个。这段函数的意思很明白了吧?

void join(int x,int y)                                                                   //我想让虚竹和周芷若做朋友

{

int fx=find(x),fy=find(y);                                                       //虚竹的老大是玄慈,芷若MM的老大是灭绝

if(fx!=fy)                                                                               //玄慈和灭绝显然不是同一个人

pre[fx ]=fy;                                                                           //方丈只好委委屈屈地当了师太的手下啦

}

再来看看路径压缩算法。建立门派的过程是用join函数两个人两个人地连接起来的,谁当谁的手下完全随机。最后的树状结构会变成什么胎唇样,我也完全无法预计,一字长蛇阵也有可能。这样查找的效率就会比较低下。最理想的情况就是所有人的直接上级都是掌门,一共就两级结构,只要找一次就找到掌门了。哪怕不能完全做到,也最好尽量接近。这样就产生了路径压缩算法。 设想这样一个场景:两个互不相识的大侠碰面了,想知道能不能揍。 于是赶紧打电话问自己的上级:“你是不是掌门?” 上级说:“我不是呀,我的上级是谁谁谁,你问问他看看。” 一路问下去,原来两人的最终boss都是东厂曹公公。 “哎呀呀,原来是记己人,西礼西礼,在下三营六组白面葫芦娃!” “幸会幸会,在下九营十八组仙子狗尾巴花!” 两人高高兴兴地手拉手喝酒去了。 “等等等等,两位同学请留步,还有事情没完成呢!”我叫住他俩。 “哦,对了,还要做路径压缩。”两人醒悟。 白面葫芦娃打电话给他的上级六组长:“组长啊,我查过了,其习偶们的掌门是曹公公。不如偶们一起及接拜在曹公公手下吧,省得级别太低,以后查找掌门麻环。” “唔,有道理。” 白面葫芦娃接着打电话给刚才拜访过的三营长……仙子狗尾巴花也做了同样的事情。 这样,查询中所有涉及到的人物都聚集在曹公公的直接领导下。每次查询都做了优化处理,所以整个门派树的层数都会维持在比较低的水平上。路径压缩的代码,看得懂很好,看不懂也没关系,直接抄上用就行了。总之它所实现的功能就是这么个意思。

http://i3.6.cn/cvbnm/60/98/92/745b3eac68181e4ee1fa8d1b8bca38bc.jpg

hdu1232

1 #include 2 using namespace std; 3 int  pre[1050]; 4 bool t[1050];               //t 用于标记独立块的根结点 5 int Find(int x) 6 { 7     int r=x; 8     while(r!=pre[r]) 9         r=pre[r];10     11     int i=x,j;12     while(pre[i]!=r)13     {14         j=pre[i];15         pre[i]=r;16         i=j;17     }18     return r;19 }20 void mix(int x,int y)21 {22     int fx=Find(x),fy=Find(y);23     if(fx!=fy)24     {25         pre[fy]=fx;26     }27 }  28 int main()29 {30     int N,M,a,b,i,j,ans;31     while(scanf("%d%d",&N,&M)&&N)32     {33         for(i=1;i<=N;i++)          //初始化 34             pre[i]=i;35         36         for(i=1;i<=M;i++)          //吸收并整理数据 37         {38             scanf("%d%d",&a,&b);39             mix(a,b);40         }41         memset(t,0,sizeof(t));42         for(i=1;i<=N;i++)          //标记根结点43         {44             t[Find(i)]=1;45         }46         for(ans=0,i=1;i<=N;i++)47             if(t[i])48                 ans++;49                 50         printf("%d\n",ans-1);51         52     }53     return 0;54 }

//以下为原文附的代码://回到开头提出的问题,我的代码如下:#include using namespace std;int pre[1000];int find(int x){    int r=x;   while (pre[r ]!=r)   r=pre[r ];   int i=x; int j;   while(i!=r)   {       j=pre[i ];       pre[i ]=r;       i=j;   }   return r;}int main(){   int n,m,p1,p2,i,total,f1,f2;   while(scanf("%d",&n) && n)         //读入n,如果n为0,结束   {                                                    //刚开始的时候,有n个城镇,一条路都没有 //那么要修n-1条路才能把它们连起来       total=n-1;       //每个点互相独立,自成一个集合,从1编号到n //所以每个点的上级都是自己       for(i=1;i<=n;i++) { pre[i ]=i; }                //共有m条路       scanf("%d",&m);        while(m--)       { //下面这段代码,其实就是join函数,只是稍作改动以适应题目要求           //每读入一条路,看它的端点p1,p2是否已经在一个连通分支里了           scanf("%d %d",&p1,&p2);           f1=find(p1);           f2=find(p2);               //如果是不连通的,那么把这两个分支连起来               //分支的总数就减少了1,还需建的路也就减了1           if(f1!=f2)            {               pre[f2 ]=f1;               total--;            }           //如果两点已经连通了,那么这条路只是在图上增加了一个环 //对连通性没有任何影响,无视掉      }//最后输出还要修的路条数       printf("%d\n",total);   }   return 0;}

关于动态连通性

我们看一张图来了解一下什么是动态连通性:

假设我们输入了一组整数对,即上图中的(4, 3) (3, 8)等等,每对整数代表这两个points/sites是连通的。那么随着数据的不断输入,整个图的连通性也会发生变化,从上图中可以很清晰的发现这一点。同时,对于已经处于连通状态的points/sites,直接忽略,比如上图中的(8, 9)。

动态连通性的应用场景:

网络连接判断:

如果每个pair中的两个整数分别代表一个网络节点,那么该pair就是用来表示这两个节点是需要连通的。那么为所有的pairs建立了动态连通图后,就能够尽可能少的减少布线的需要,因为已经连通的两个节点会被直接忽略掉。

变量名等同性(类似于指针的概念):

对问题建模:

在对问题进行建模的时候,我们应该尽量想清楚需要解决的问题是什么。因为模型中选择的数据结构和算法显然会根据问题的不同而不同,就动态连通性这个场景而言,我们需要解决的问题可能是:

给出两个节点,判断它们是否连通,如果连通,不需要给出具体的路径给出两个节点,判断它们是否连通,如果连通,需要给出具体的路径

就上面两种问题而言,虽然只有是否能够给出具体路径的区别,但是这个区别导致了选择算法的不同,本文主要介绍的是第一种情况,即不需要给出具体路径的Union-Find算法,而第二种情况可以使用基于DFS的算法。

建模思路:

最简单而直观的假设是,对于连通的所有节点,我们可以认为它们属于一个组,因此不连通的节点必然就属于不同的组。随着Pair的输入,我们需要首先判断输入的两个节点是否连通。如何判断呢?按照上面的假设,我们可以通过判断它们属于的组,然后看看这两个组是否相同,如果相同,那么这两个节点连通,反之不连通。为简单起见,我们将所有的节点以整数表示,即对N个节点使用0到N-1的整数表示。而在处理输入的Pair之前,每个节点必然都是孤立的,即他们分属于不同的组,可以使用数组来表示这一层关系,数组的index是节点的整数表示,而相应的值就是该节点的组号了。该数组可以初始化为:

1
2
for(int i = 0; i < size; i++) 
    id[i] = i;  

即对于节点i,它的组号也是i。

初始化完毕之后,对该动态连通图有几种可能的操作:

查询节点属于的组

数组对应位置的值即为组号

判断两个节点是否属于同一个组

分别得到两个节点的组号,然后判断组号是否相等

连接两个节点,使之属于同一个组

分别得到两个节点的组号,组号相同时操作结束,不同时,将其中的一个节点的组号换成另一个节点的组号

获取组的数目

初始化为节点的数目,然后每次成功连接两个节点之后,递减1

API

我们可以设计相应的API:

注意其中使用整数来表示节点,如果需要使用其他的数据类型表示节点,比如使用字符串,那么可以用哈希表来进行映射,即将String映射成这里需要的Integer类型。

分析以上的API,方法connected和union都依赖于find,connected对两个参数调用两次find方法,而union在真正执行union之前也需要判断是否连通,这又是两次调用find方法。因此我们需要把find方法的实现设计的尽可能的高效。所以就有了下面的Quick-Find实现。

Quick-Find 算法:

1 public class UF 2 { 3     private int[] id; // access to component id (site indexed) 4     private int count; // number of components 5     public UF(int N) 6     { 7         // Initialize component id array. 8         count = N; 9         id = new int[N];10         for (int i = 0; i < N; i++)11             id[i] = i;12     }13     public int count()14     { return count; }15     public boolean connected(int p, int q)16     { return find(p) == find(q); }17     public int find(int p)18     { return id[p]; }19     public void union(int p, int q)20     {  21         // 获得p和q的组号22         int pID = find(p);23         int qID = find(q);24         // 如果两个组号相等,直接返回25         if (pID == qID) return;26         // 遍历一次,改变组号使他们属于一个组27         for (int i = 0; i < id.length; i++)28             if (id[i] == pID) id[i] = qID;29         count--;30     }31 }

举个例子,比如输入的Pair是(5, 9),那么首先通过find方法发现它们的组号并不相同,然后在union的时候通过一次遍历,将组号1都改成8。当然,由8改成1也是可以的,保证操作时都使用一种规则就行。

上述代码的find方法十分高效,因为仅仅需要一次数组读取操作就能够找到该节点的组号,但是问题随之而来,对于需要添加新路径的情况,就涉及到对于组号的修改,因为并不能确定哪些节点的组号需要被修改,因此就必须对整个数组进行遍历,找到需要修改的节点,逐一修改,这一下每次添加新路径带来的复杂度就是线性关系了,如果要添加的新路径的数量是M,节点数量是N,那么最后的时间复杂度就是MN,显然是一个平方阶的复杂度,对于大规模的数据而言,平方阶的算法是存在问题的,这种情况下,每次添加新路径就是“牵一发而动全身”,想要解决这个问题,关键就是要提高union方法的效率,让它不再需要遍历整个数组。

Quick-Union 算法:

考虑一下,为什么以上的解法会造成“牵一发而动全身”?因为每个节点所属的组号都是单独记录,各自为政的,没有将它们以更好的方式组织起来,当涉及到修改的时候,除了逐一通知、修改,别无他法。所以现在的问题就变成了,如何将节点以更好的方式组织起来,组织的方式有很多种,但是最直观的还是将组号相同的节点组织在一起,想想所学的数据结构,什么样子的数据结构能够将一些节点给组织起来?常见的就是链表,图,树,什么的了。但是哪种结构对于查找和修改的效率最高?毫无疑问是树,因此考虑如何将节点和组的关系以树的形式表现出来。

如果不改变底层数据结构,即不改变使用数组的表示方法的话。可以采用parent-link的方式将节点组织起来,举例而言,id[p]的值就是p节点的父节点的序号,如果p是树根的话,id[p]的值就是p,因此最后经过若干次查找,一个节点总是能够找到它的根节点,即满足id[root] = root的节点也就是组的根节点了,然后就可以使用根节点的序号来表示组号。所以在处理一个pair的时候,将首先找到pair中每一个节点的组号(即它们所在树的根节点的序号),如果属于不同的组的话,就将其中一个根节点的父节点设置为另外一个根节点,相当于将一颗独立的树编程另一颗独立的树的子树。直观的过程如下图所示。但是这个时候又引入了问题。

在实现上,和之前的Quick-Find只有find和union两个方法有所不同:

1 private int find(int p) 2 {   3     // 寻找p节点所在组的根节点,根节点具有性质id[root] = root 4     while (p != id[p]) p = id[p]; 5     return p; 6 } 7 public void union(int p, int q) 8 {   9     // Give p and q the same root.10     int pRoot = find(p);11     int qRoot = find(q);12     if (pRoot == qRoot)  13         return;14     id[pRoot] = qRoot;    // 将一颗树(即一个组)变成另外一课树(即一个组)的子树15     count--;16 }

树这种数据结构容易出现极端情况,因为在建树的过程中,树的最终形态严重依赖于输入数据本身的性质,比如数据是否排序,是否随机分布等等。比如在输入数据是有序的情况下,构造的BST会退化成一个链表。在我们这个问题中,也是会出现的极端情况的,如下图所示。

为了克服这个问题,BST可以演变成为红黑树或者AVL树等等。

然而,在我们考虑的这个应用场景中,每对节点之间是不具备可比性的。因此需要想其它的办法。在没有什么思路的时候,多看看相应的代码可能会有一些启发,考虑一下Quick-Union算法中的union方法实现:

1 public void union(int p, int q) 2 {   3     // Give p and q the same root. 4     int pRoot = find(p); 5     int qRoot = find(q); 6     if (pRoot == qRoot)   7         return; 8     id[pRoot] = qRoot;  // 将一颗树(即一个组)变成另外一课树(即一个组)的子树 9     count--;10 }

上面 id[pRoot] = qRoot 这行代码看上去似乎不太对劲。因为这也属于一种“硬编码”,这样实现是基于一个约定,即p所在的树总是会被作为q所在树的子树,从而实现两颗独立的树的融合。那么这样的约定是不是总是合理的呢?显然不是,比如p所在的树的规模比q所在的树的规模大的多时,p和q结合之后形成的树就是十分不和谐的一头轻一头重的”畸形树“了。

所以我们应该考虑树的大小,然后再来决定到底是调用:

id[pRoot] = qRoot 或者是 id[qRoot] = pRoot

即总是size小的树作为子树和size大的树进行合并。这样就能够尽量的保持整棵树的平衡。

所以现在的问题就变成了:树的大小该如何确定?

我们回到最初的情形,即每个节点最一开始都是属于一个独立的组,通过下面的代码进行初始化:

1
2
for (int i = 0; i < N; i++) 
    id[i] = i;    // 每个节点的组号就是该节点的序号

以此类推,在初始情况下,每个组的大小都是1,因为只含有一个节点,所以我们可以使用额外的一个数组来维护每个组的大小,对该数组的初始化也很直观:

1
2
for (int i = 0; i < N; i++) 
    sz[i] = 1;    // 初始情况下,每个组的大小都是1 

而在进行合并的时候,会首先判断待合并的两棵树的大小,然后按照上面图中的思想进行合并,实现代码:

1 public void union(int p, int q) 2 { 3     int i = find(p); 4     int j = find(q); 5     if (i == j) return; 6     // 将小树作为大树的子树 7     if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; } 8     else { id[j] = i; sz[i] += sz[j]; } 9     count--;10 }

Quick-Union 和 Weighted Quick-Union 的比较:

可以发现,通过sz数组决定如何对两棵树进行合并之后,最后得到的树的高度大幅度减小了。这是十分有意义的,因为在Quick-Union算法中的任何操作,都不可避免的需要调用find方法,而该方法的执行效率依赖于树的高度。树的高度减小了,find方法的效率就增加了,从而也就增加了整个Quick-Union算法的效率。

上图其实还可以给我们一些启示,即对于Quick-Union算法而言,节点组织的理想情况应该是一颗十分扁平的树,所有的孩子节点应该都在height为1的地方,即所有的孩子都直接连接到根节点。这样的组织结构能够保证find操作的最高效率。

那么如何构造这种理想结构呢?

在find方法的执行过程中,不是需要进行一个while循环找到根节点嘛?如果保存所有路过的中间节点到一个数组中,然后在while循环结束之后,将这些中间节点的父节点指向根节点,不就行了么?但是这个方法也有问题,因为find操作的频繁性,会造成频繁生成中间节点数组,相应的分配销毁的时间自然就上升了。那么有没有更好的方法呢?还是有的,即将节点的父节点指向该节点的爷爷节点,这一点很巧妙,十分方便且有效,相当于在寻找根节点的同时,对路径进行了压缩,使整个树结构扁平化。相应的实现如下,实际上只需要添加一行代码:

1     private int find(int p)    2     {    3         while (p != id[p])    4         {    5             // 将p节点的父节点设置为它的爷爷节点   6             id[p] = id[id[p]];    7             p = id[p];    8         }    9         return p;   10     }

至此,动态连通性相关的Union-Find算法基本上就介绍完了,从容易想到的Quick-Find到相对复杂但是更加高效的Quick-Union,然后到对Quick-Union的几项改进,让我们的算法的效率不断的提高。

这几种算法的时间复杂度如下所示:

Algorithm

Constructor

Union

Find

Quick-Find

N

N

1

Quick-Union

N

Tree height

Tree height

Weighted Quick-Union

N

lgN

lgN

Weighted Quick-Union With Path Compression

N

Very near to 1 (amortized)

Very near to 1 (amortized)

对大规模数据进行处理,使用平方阶的算法是不合适的,比如简单直观的Quick-Find算法,通过发现问题的更多特点,找到合适的数据结构,然后有针对性的进行改进,得到了Quick-Union算法及其多种改进算法,最终使得算法的复杂度降低到了近乎线性复杂度。

如果需要的功能不仅仅是检测两个节点是否连通,还需要在连通时得到具体的路径,那么就需要用到别的算法了,比如DFS或者BFS。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:c语言项目开发流程一部曲
下一篇:POJ 1012 Joseph
相关文章

 发表评论

评论列表