多平台统一管理软件接口,如何实现多平台统一管理软件接口
257
2022-10-28
Java基础之容器Vector详解
一、前言
知识补充:Arrays.copyOf函数:
public static int[] copyOf(int[] original, int newLength) {
int[] copy = new int[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
}
可见copyOf()在内部新建一个数组,调用arrayCopy()将original内容复制到copy中去,并且长度为newLength。返回copy;
继续看一下System.arraycopy函数:
public static native void arraycopy(Object src, int srcPos,
Object dest, int destPos,
int length);
src - 源数组。
srcPos - 源数组中的起始位置。
dest - 目标数组。
destPos - 目标数据中的起始位置。
length - 要复制的数组元素的数量。
该方法是用了native关键字,调用的为C++编写的底层函数,可见其为JDK中的底层函数。
二、Vector简介
public class Vector
extends AbstractList
implements List
Vector类实现了一个可增长的对象数组,内部是以动态数组的形式来存储数据的。
Vector具有数组所具有的特性、通过索引支持随机访问、所以通过随机访问Vector中的元素效率非常高、但是执行插入、删除时效率比较低下。
继承了AbstractList,此类提供 List 接口的骨干实现,以最大限度地减少实现”随机访问”数据存储(如数组)支持的该接口所需的工作.对于连续的访问数据(如链表),应优先使用 AbstractSequentialList,而不是此类.
实现了List接口,意味着Vector元素是有序的,可以重复的,可以有null元素的集合.
实现了RandomAccess接口标识着其支持随机快速访问,实际上,我们查看RandomAccess源码可以看到,其实里面什么都没有定义.因为ArrayList底层是数组,那么随机快速访问是理所当然的,访问速度O(1).
实现了Cloneable接口,标识着可以它可以被复制.注意,ArrayList里面的clone()复制其实是浅复制
实现了Serializable 标识着集合可被序列化。
三、Vector源码
public class Vector
extends AbstractList
implements List
{
//保存Vector数据的数组
protected Object[] elementData;
//实际数据的数量
protected int elementCount;
//容量增长的系数
protected int capacityIncrement;
// Vector的序列版本号
private static final long serialVersionUID = -2767605614048989439L;
//指定Vector初始大小和增长系数的构造函数
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];
this.capacityIncrement = capacityIncrement;
}
//指定初始容量的构造函数
public Vector(int initialCapacity) {
this(initialCapacity, 0);
}
//Vector构造函数,默认容量为10
public Vector() {
this(10);
}
//初始化一个指定集合数据的构造函数
public Vector(Collection extends E> c) {
elementData = c.toArray();
elementCount = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
}
//将Vector全部元素拷贝到anArray数组中
public synchronized void copyInto(Object[] anArray) {
System.arraycopy(elementData, 0, anArray, 0, elementCount);
}
//当前的数组中元素个数大于记录的元素个数时,重新赋值给当前数组所记录的元素
public synchronized void trimToSize() {
modCount++;
int oldCapacity = elementData.length;
if (elementCount < oldCapacity) {
elementData = Arrays.copyOf(elementData, elementCount);
}
}
//确定Vector的容量
public synchronized void ensureCapacity(int minCapacity) {
if (minCapacity > 0) {
// 将Vector的改变统计数+1
modCount++;
ensureCapacityHelper(minCapacity);
}
}
//确定容量的帮助函数,如果所需容量大于当前的容量时则执行扩容
private void ensureCapacityHelper(int minCapacity) {
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
//数组所允许的最大容量
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
//执行扩容函数
private void grow(int minCapacity) {
// overflow-conscious code
//记录当前容量
int oldCapacity = elementData.length;
//如果扩容系数大于0则新容量等于当前容量+扩容系数,如果扩容系数小于等于0则新容量等于当前容量的2倍
int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
capacityIncrement : oldCapacity);
//如果新容量小于当前需要的容量,则把需要的容量赋值给需要扩容的新容量
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
//如果新扩容容量大于最大数组容量,则执行巨大扩容
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}
//巨大扩容函数,如果所需容量大于最大数组容量,则返回int形最大值(2^31 -1),否则返回最大数组容量
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
//设置容量值为newSize,如果newSize大于当前容量,则扩容,否则newSize以后的所有元素置null
public synchronized void setSize(int newSize) {
modCount++;
if (newSize > elementCount) {
ensureCapacityHelper(newSize);
} else {
for (int i = newSize ; i < elementCount ; i++) {
elementData[i] = null;
}
}
elementCount = newSize;
}
//返回当前Vector的容量
public synchronized int capacity() {
return elementData.length;
}
//返回Vector元素的个数
public synchronized int size() {
return elementCount;
}
//Vector元素个数是否为0
public synchronized boolean isEmpty() {
return elementCount == 0;
}
//返回Vector元素的Enumeration,Enumeration 接口是Iterator迭代器的“古老版本”
//Enumeration接口中的方法名称难以记忆,而且没有Iterator的remove()方法。如果现在编写Java程序,应该尽量采用
//Iterator迭代器,而不是用Enumeration迭代器。
//之所以保留Enumeration接口的原因,主要为了照顾以前那些“古老”的程序,那些程序里大量使用Enumeration接口,如果新版
//本的Java里直接删除Enumeration接口,将会导致那些程序全部出错。
public Enumeration
return new Enumeration
int count = 0;
public boolean hasMoreElements() {
return count < elementCount;
}
public E nextElement() {
synchronized (Vector.this) {
if (count < elementCount) {
return elementData(count++);
}
}
throw new NoSuchElementException("Vector Enumeration");
}
};
}
//返回Vector中是否包含对象o
public boolean contains(Object o) {
return indexOf(o, 0) >= 0;
}
// 查找并返回元素(o)在Vector中的索引值
public int indexOf(Object o) {
return indexOf(o, 0);
}
// 从index位置开始向后查找元素(o)。
// 若找到,则返回元素的索引值;否则,返回-1
public synchronized int indexOf(Object o, int index) {
if (o == null) {
for (int i = index ; i < elementCount ; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = index ; i < elementCount ; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
// 从后向前查找元素(o)。并返回元素的索引
public synchronized int lastIndexOf(Object o) {
return lastIndexOf(o, elementCount-1);
}
// 从index位置开始向前查找元素(o)。
// 若找到,则返回元素的索引值;否则,返回-1
public synchronized int lastIndexOf(Object o, int index) {
if (index >= elementCount)
throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
if (o == null) {
for (int i = index; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = index; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
// 返回Vector中index位置的元素。
// 若index越界,则抛出异常
public synchronized E elementAt(int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
}
return elementData(index);
}
// 返回Vector中第0位置的元素。
public synchronized E firstElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return elementData(0);
}
// 返回Vector中最后一个元素。
public synchronized E lastElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return elementData(elementCount - 1);
}
// 设置index位置的元素值为obj
public synchronized void setElementAt(E obj, int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
elementData[index] = obj;
}
//删除index位置处的元素
public synchronized void removeElementAt(int index) {
modCount++;
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
else if (index < 0) {
throw new ArrayIndexOutOfBoundsException(index);
}
int j = elementCount - index - 1;
if (j > 0) {
System.arraycopy(elementData, index + 1, elementData, index, j);
}
elementCount--;
elementData[elementCount] = null; /* to let gc do its work */
}
//在index位置插入元素obj
public synchronized void insertElementAt(E obj, int index) {
modCount++;
if (index > elementCount) {
throw new ArrayIndexOutOfBoundsException(index
+ " > " + elementCount);
}
ensureCapacityHelper(elementCount + 1);
System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
elementData[index] = obj;
elementCount++;
}
//在vector后面添加对象obj
public synchronized void addElement(E obj) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = obj;
}
// 在Vector中查找并删除元素obj。
// 成功的话,返回true;否则,返回false。
public synchronized boolean removeElement(Object obj) {
modCount++;
int i = indexOf(obj);
if (i >= 0) {
removeElementAt(i);
return true;
}
return false;
}
//删除Vector中所有元素
public synchronized void removeAllElements() {
modCount++;
// Let gc do its work
for (int i = 0; i < elementCount; i++)
elementData[i] = null;
elementCount = 0;
}
//返回Vector的克隆。 该副本将包含对内部数据数组的克隆的引用,而不是对此对象的原始内部数据数组的引用。
public synchronized Object clone() {
try {
@SuppressWarnings("unchecked")
Vector
v.elementData = Arrays.copyOf(elementData, elementCount);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}
//返回包含Vector所有元素的数组
public synchronized Object[] toArray() {
return Arrays.copyOf(elementData, elementCount);
}
// 返回Vector的模板数组。所谓模板数组,即可以将T设为任意的数据类型
@SuppressWarnings("unchecked")
public synchronized
// 若数组a的大小 < Vector的元素个数;
// 则新建一个T[]数组,数组大小是“Vector的元素个数”,并将“Vector”全部拷贝到新数组中
if (a.length < elementCount)
return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
// 若数组a的大小 >= Vector的元素个数;
// 则将Vector的全部元素都拷贝到数组a中。
System.arraycopy(elementData, 0, a, 0, elementCount);
if (a.length > elementCount)
a[elementCount] = null;
return a;
}
// Positional Access Operations
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
//获取index处的元素
public synchronized E get(int index) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
return elementData(index);
}
//设置index处的元素为element,并返回被替换掉的元素
public synchronized E set(int index, E element) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
//Vector末尾添加元素
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;
return true;
}
//移除Vector中第一个出现对象o的元素
public boolean remove(Object o) {
return removeElement(o);
}
//在index位置添加对象element
public void add(int index, E element) {
insertElementAt(element, index);
}
//移除index位置的元素
public synchronized E remove(int index) {
modCount++;
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
E oldValue = elementData(index);
int numMoved = elementCount - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--elementCount] = null; // Let gc do its work
return oldValue;
}
// 清空Vector
public void clear() {
removeAllElements();
}
// Bulk Operations
// 返回Vector是否包含集合c
public synchronized boolean containsAll(Collection> c) {
return super.containsAll(c);
}
//在Vector末尾添加集合c
public synchronized boolean addAll(Collection extends E> c) {
modCount++;
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);
System.arraycopy(a, 0, elementData, elementCount, numNew);
elementCount += numNew;
return numNew != 0;
}
// 删除集合c的全部元素
public synchronized boolean removeAll(Collection> c) {
return super.removeAll(c);
}
// 删除“非集合c中的元素”
public synchronized boolean retainAll(Collection> c) {
return super.retainAll(c);
}
//在index位置添加集合c中的元素
public synchronized boolean addAll(int index, Collection extends E> c) {
modCount++;
if (index < 0 || index > elementCount)
throw new ArrayIndexOutOfBoundsException(index);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);
int numMoved = elementCount - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
elementCount += numNew;
return numNew != 0;
}
// 返回两个对象是否相等
public synchronized boolean equals(Object o) {
return super.equals(o);
}
// 计算哈希值
public synchronized int hashCode() {
return super.hashCode();
}
// 调用父类的toString()
public synchronized String toString() {
return super.toString();
}
// 获取Vector中fromIndex(包括)到toIndex(不包括)的子集
public synchronized List
return Collections.synchronizedList(super.subList(fromIndex, toIndex),
this);
}
// 删除Vector中fromIndex到toIndex的元素
protected synchronized void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = elementCount - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// Let gc do its work
int newElementCount = elementCount - (toIndex-fromIndex);
while (elementCount != newElementCount)
elementData[--elementCount] = null;
}
// java.io.Serializable的写入函数
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
final java.io.ObjectOutputStream.PutField fields = s.putFields();
final Object[] data;
synchronized (this) {
fields.put("capacityIncrement", capacityIncrement);
fields.put("elementCount", elementCount);
data = elementData.clone();
}
fields.put("elementData", data);
s.writeFields();
}
public synchronized ListIterator
if (index < 0 || index > elementCount)
throw new IndexOutOfBoundsException("Index: "+index);
http:// return new ListItr(index);
}
public synchronized ListIterator
return new ListItr(0);
}
public synchronized Iterator
return new Itr();
}
private class Itr implements Iterator
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
public boolean hasNext() {
// Racy but within spec, since modifications are checked
// within or after synchronization in next/previous
return cursor != elementCount;
}
public E next() {
synchronized (Vector.this) {
checkForComodification();
int i = cursor;
if (i >= elementCount)
throw new NoSuchElementException();
cursor = i + 1;
return elementData(lastRet = i);
}
}
public void remove() {
if (lastRet == -1)
throw new IllegalStateException();
synchronized (Vector.this) {
checkForComodification();
Vector.this.remove(lastRet);
expectedModCount = modCount;
}
cursor = lastRet;
lastRet = -1;
}
@Override
public void forEachRemaining(Consumer super E> action) {
Objects.requireNonNull(action);
synchronized (Vector.this) {
final int size = elementCount;
int i = cursor;
if (i >= size) {
return;
}
@SuppressWarnings("unchecked")
final E[] elementData = (E[]) Vector.this.elementData;
if (i >= elementData.length) {
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
action.accept(elementData[i++]);
}
// update once at end of iteration to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
}
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
final class ListItr extends Itr implements ListIterator
ListItr(int index) {
super();
cursor = index;
}
public boolean hasPrevious() {
return cursor != 0;
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor - 1;
}
public E previous() {
synchronized (Vector.this) {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
cursor = i;
return elementData(lastRet = i);
}
}
public void set(E e) {
if (lastRet == -1)
throw new IllegalStateException();
synchronized (Vector.this) {
checkForComodification();
Vector.this.set(lastRet, e);
}
}
public void add(E e) {
int i = cursor;
synchronized (Vector.this) {
checkForComodification();
Vector.this.add(i, e);
expectedModCount = modCount;
}
cursor = i + 1;
lastRet = -1;
}
}
@Override
public synchronized void forEach(Consumer super E> action) {
Objects.requireNonNull(action);
final int expectedModCount = modCount;
@SuppressWarnings("unchecked")
final E[] elementData = (E[]) this.elementData;
final int elementCount = this.elementCount;
for (int i=0; modCount == expectedModCount && i < elementCount; i++) {
action.accept(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
@Override
@SuppressWarnings("unchecked")
public synchronized boolean removeIf(Predicate super E> filter) {
Objects.requireNonNull(filter);
// figure out which elements are to be removed
// any exception thrown from the filter predicate at this stage
// will leave the collection unmodified
int removeCount = 0;
final int size = elementCount;
final BitSet removeSet = new BitSet(size);
final int expectedModCount = modCount;
for (int i=0; modCount == expectedModCount && i < size; i++) {
@SuppressWarnings("unchecked")
final E element = (E) elementData[i];
if (filter.test(element)) {
removeSet.set(i);
removeCount++;
}
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
// shift surviving elements left over the spaces left by removed elements
final boolean anyToRemove = removeCount > 0;
if (anyToRemove) {
final int newSize = size - removeCount;
for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
i = removeSet.nextClearBit(i);
elementData[j] = elementData[i];
}
for (int k=newSize; k < size; k++) {
elementData[k] = null; // Let gc do its work
}
elementCount = newSize;
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
return anyToRemove;
}
@Override
@SuppressWarnings("unchecked")
public synchronized void replaceAll(UnaryOperator
Objects.requireNonNull(operator);
final int expectedModCount = modCount;
final int size = elementCount;
for (int i=0; modCount == expectedModCount && i < size; i++) {
elementData[i] = operator.apply((E) elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
@SuppressWarnings("unchecked")
@Override
public synchronized void sort(Comparator super E> c) {
final int expectedModCount = modCount;
Arrays.sort((E[]) elementData, 0, elementCount, c);
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
@Override
public Spliterator
return new VectorSpliterator<>(this, null, 0, -1, 0);
}
/** Similar to ArrayList Spliterator */
static final class VectorSpliterator
private final Vector
private Object[] array;
private int index; // current index, modified on advance/split
private int fence; // -1 until used; then one past last index
private int expectedModCount; // initialized when fence set
/** Create new spliterator covering the given range */
VectorSpliterator(Vector
int expectedModCount) {
this.list = list;
this.array = array;
this.index = origin;
this.fence = fence;
this.expectedModCount = expectedModCount;
}
private int getFence() { // initialize on first use
int hi;
if ((hi = fence) < 0) {
synchronized(list) {
array = list.elementData;
expectedModCount = list.modCount;
hi = fence = list.elementCount;
}
}
return hi;
}
public Spliterator
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid) ? null :
new VectorSpliterator
expectedModCount);
}
@SuppressWarnings("unchecked")
public boolean tryAdvance(Consumer super E> action) {
int i;
if (action == null)
throw new NullPointerException();
if (getFence() > (i = index)) {
index = i + 1;
action.accept((E)array[i]);
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
return false;
}
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer super E> action) {
int i, hi; // hoist accesses and checks from loop
Vector
if (action == null)
throw new NullPointerException();
if ((lst = list) != null) {
if ((hi = fence) < 0) {
synchronized(lst) {
expectedModCount = lst.modCount;
a = array = lst.elementData;
hi = fence = lst.elementCount;
}
}
else
a = array;
if (a != null && (i = index) >= 0 && (index = hi) <= a.length) {
while (i < hi)
action.accept((E) a[i++]);
if (lst.modCount == expectedModCount)
return;
}
}
throw new ConcurrentModificationException();
}
public long estimateSize() {
return (long) (getFence() - index);
}
public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
}
}
四、总结
Vector实际上是通过一个数组去保存数据的。当我们构造Vecotr时;若使用默认构造函数,则Vector的默认容量大小是10。
当Vector容量不足以容纳全部元素时,Vector的容量会增加。若容量增加系数 >0,则将容量的值增加“容量增加系数”;否则,将容量大小增加一倍。
Vector的克隆函数,即是将全部元素克隆到一个数组中。
五、Vector遍历方式
1. 随机访问遍历,通过索引值去遍历
由于Vector实现了RandomAccess接口,它支持通过索引值去随机访问元素。
Integer value = null;
int size = vec.size();
for (int i=0; i value = (Integer)vec.get(i); } 2. 通过迭代器遍历。即通过Iterator去遍历 Integer value = null; Iterator while (iterator.hasNext()) { value = iterator.next(); } 3. 通过增强for循环去遍历 Integer value = null; for (Integer integ:vec) { value = integ; } 4. 通过Enumeration遍历 Integer value = null; Enumeration enu = vec.elements(); while (enu.hasMoreElements()) { value = (Integer)enu.nextElement(); } 测试这些遍历方式效率的代码如下: public class Test { public static void main(String[] args) { Vector for (int i = 0; i < 100000; i++) vector.add(i); iteratorThroughRandomAccess(vector); iteratorThroughIterator(vector); iteratorThroughFor2(vector); iteratorThroughEnumeration(vector); } public static void iteratorThroughRandomAccess(List list) { long startTime, endTime; startTime = System.currentTimeMillis(); for (int i = 0; i < list.size(); i++) { } endTime = System.currentTimeMillis(); long time = endTime - startTime; System.out.println("iteratorThroughRandomAccess:" + time + " ms"); } public static void iteratorThroughIterator(List list) { long startTime, endTime; startTime = System.currentTimeMillis(); Iterator while (iterator.hasNext()) { iterator.next(); } endTime = System.currentTimeMillis(); long time = endTime - startTime; System.out.println("iteratorThroughIterator:" + time + " ms"); } public static void iteratorThroughFor2(List list) { long startTime, endTime; startTime = System.currentTimeMillis(); for (Object o : list) { } endTime = System.currentTimeMillis(); long time = endTime - startTime; System.out.println("iteratorThroughFor2:" + time + oQQIve" ms"); } public static void iteratorThroughEnumeration(Vector vec) { long startTime, endTime; startTime = System.currentTimeMillis(); for (Enumeration enu = vec.elements(); enu.hasMoreElements(); ) { enu.nextElement(); } endTime = System.currentTimeMillis(); long time = endTime - startTime; System.out.println("iteratorThroughEnumeration:" + time + " ms"); } } 输出如下: iteratorThroughRandomAccess:3 ms iteratorThroughIterator:6 ms iteratorThroughFor2:5 ms iteratorThroughEnumeration:5 ms 所以:遍历Vector,使用索引的随机访问方式最快,使用迭代器最慢。
value = (Integer)vec.get(i);
}
2. 通过迭代器遍历。即通过Iterator去遍历
Integer value = null;
Iterator
while (iterator.hasNext()) {
value = iterator.next();
}
3. 通过增强for循环去遍历
Integer value = null;
for (Integer integ:vec) {
value = integ;
}
4. 通过Enumeration遍历
Integer value = null;
Enumeration enu = vec.elements();
while (enu.hasMoreElements()) {
value = (Integer)enu.nextElement();
}
测试这些遍历方式效率的代码如下:
public class Test {
public static void main(String[] args) {
Vector
for (int i = 0; i < 100000; i++)
vector.add(i);
iteratorThroughRandomAccess(vector);
iteratorThroughIterator(vector);
iteratorThroughFor2(vector);
iteratorThroughEnumeration(vector);
}
public static void iteratorThroughRandomAccess(List list) {
long startTime, endTime;
startTime = System.currentTimeMillis();
for (int i = 0; i < list.size(); i++) {
}
endTime = System.currentTimeMillis();
long time = endTime - startTime;
System.out.println("iteratorThroughRandomAccess:" + time + " ms");
}
public static void iteratorThroughIterator(List list) {
long startTime, endTime;
startTime = System.currentTimeMillis();
Iterator
while (iterator.hasNext()) {
iterator.next();
}
endTime = System.currentTimeMillis();
long time = endTime - startTime;
System.out.println("iteratorThroughIterator:" + time + " ms");
}
public static void iteratorThroughFor2(List list) {
long startTime, endTime;
startTime = System.currentTimeMillis();
for (Object o : list) {
}
endTime = System.currentTimeMillis();
long time = endTime - startTime;
System.out.println("iteratorThroughFor2:" + time + oQQIve" ms");
}
public static void iteratorThroughEnumeration(Vector vec) {
long startTime, endTime;
startTime = System.currentTimeMillis();
for (Enumeration enu = vec.elements(); enu.hasMoreElements(); ) {
enu.nextElement();
}
endTime = System.currentTimeMillis();
long time = endTime - startTime;
System.out.println("iteratorThroughEnumeration:" + time + " ms");
}
}
输出如下:
iteratorThroughRandomAccess:3 ms
iteratorThroughIterator:6 ms
iteratorThroughFor2:5 ms
iteratorThroughEnumeration:5 ms
所以:遍历Vector,使用索引的随机访问方式最快,使用迭代器最慢。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~