使用SoapUI测试webservice接口详细步骤
418
2022-11-03
随机矩阵相关理论
随机矩阵理论
随机矩阵理论(random matrix theory,RMT)的研究起源于原子核物理领域。Wigner在研究量子系统中得出结论,对于复杂的量子系统,随机矩阵理论的预测代表了所有可能相互作用的一种平均。偏离预测的那部分属性反映了系统中特殊非随机的性质,这为了解和研究潜在的相互作用和关系提供了理论支撑。 RMT以矩阵为单位,可以处理独立同分布(independent identically distributed,IID)的数据。RMT并不对源数据的分布、特征等做出要求(如满足高斯分布,为Hermitian矩阵等),仅要求数据足够大(并非无限)/18。故该工具适合处理大多数的工程问题,特别适合用于分析具有一定随机性的海量数据系统。随机矩阵理论认为当系统中仅有白噪声、小扰动和测量误差时,系统的数据将呈现出一种统计随机特性;而当系统中有信号源(事件)时,在其作用下系统的运行机制和内部机理将会改变,其统计随机特性将会被打破。单环定律(Ring Law)、Marchenko-Pastur定律(M-P Law)均是RMT体系的重大突破。在这些理论基础上,可进一步研究随机矩阵的线性特征根统计量(linear eigenvaluestatistics, LES),而平均谱半径(mean spectral radius)则是LES所构造出的一个具体对象。
无信号时的单环定律谱分布示意图
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~