Flask接口签名sign原理与实例代码浅析
313
2022-11-04
Java并发编程之ReentrantLock可重入锁的实例代码
目录 1.ReentrantLock可重入锁概述2.可重入3.可打断4.锁超时5.公平锁6.条件变量 Condition
1.ReentrantLock可重入锁概述
相对于 synchronized 它具备如下特点
可中断
synchronized锁加上去不能中断,a线程应用锁,b线程不能取消掉它
可以设置超时时间
synchronized它去获取锁时,如果对方持有锁,那么它就会进入entryList一直等待下去。而可重入锁可以设置超时时间,规定时间内如果获取不到锁,就放弃锁
可以设置为公平锁
防止线程饥饿的情况,即先到先得。如果争抢的人比较多,则可能会发生永远都得不到锁
支持多个条件变量多个waitset(不支持条件一的去a不支持条件二的去b)
synchronized只支持同一个waitset.
与 synchronized 一样,都支持可重入
基本语法
// 获取锁
reentrantLock.lock();
try {
// 临界区
} finally {
// 释放锁
reentrantLock.unlock();
}
synchronized是在关键字的级别来保护临界区,而reentrantLock是在对象的级别保护临界区。临界区即访问共享资源的那段代码。finally中表明不管将来是否出现异常,都会释放锁,释放锁即调用unlock方法。否则无法释放锁,其它线程就永远也获取不了锁。
2.可重入
可重入是指同一个线程如果首次获得了这把锁,那么因为它是这把锁的拥有者,因此有权利再次获取这把锁
如果是不可重入锁,那么第二次获得锁时,自己也会被锁挡住
ReentrantLock和synchronized都是可重入锁。
public class TestReentranLock1 {
static ReentrantLock lock = new ReentrantLock();
public static void main(String[] args) {
method1();
}
public static void method1() {
lock.lock();
try {
System.out.println("execute method1");
method2();
} finally {
lock.unlock();
}
}
public static void method2() {
lock.lock();
try {
System.out.println("execute method2");
method3();
} finally {
lock.unlock();
}
}
public static void method3() {
lock.lock();
try {
System.out.println("execute method3");
} finahttp://lly {
lock.unlock();
}
}
}
execute method1
execute method2
execute method3
3.可打断
可打断是指在等待锁的过程中,其它线程可以用interrupt方法终止我的等待。synchronized锁是不可打断的。
我们要想在等锁的过程中被打断,就要使用lockInterruptibly()方法对lock对象加锁,而不是lock()方法
public class TestReentranLock2 {
public static void main(String[] args) {
ReentrantLock lock = new ReentrantLock();
Thread t1 = new Thread(() -> {
try {
//如果没有竞争,此方法就会获取lock对象的锁
//如果有竞争,就进入阻塞队列等待,可以被其它线程用interrupt打断
System.out.println("尝试获得锁");
lock.lockInterruptibly();
} catch (InterruptedException e) {
e.printStackTrace();
System.out.println("等锁的过程中被打断");
return;
}
try {
System.out.println("t1获得了锁");
} finally {
lock.unlock();
}
}, "t1");
lock.lock();
System.out.println("主线程获得了锁");
t1.start();
try {
try {
sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
t1.interrupt();
System.out.println("执行打断t1");
} finally {
lock.unlock();
}
}
}
主线程获得了锁
尝试获得锁
执行打断t1
等锁的过程中被打断
java.lang.InterruptedException
at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireInterruptibly(AbstractQueuedSynchronizer.java:898)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireInterruptibly(AbstractQueuedSynchronizer.java:1222)
at java.util.concurrent.locks.ReentrantLock.lockInterruptibly(ReentrantLock.java:335)
at cn.yj.jvm.TestReentranLock2.lambda$main$0(TestReentranLock2.java:15)
at java.lang.Thread.run(Thread.java:748)
注意如果是不可中断模式,那么即使使用了 interrupt 也不会让等待中断,即不是。即使用lock()方法。
这种方式可以避免死锁情况的发生,避免无休止的等待。
ReentrantLock lock = new ReentrantLock();
Thread t1 = new Thread(() -> {
System.out.println("启动...");
lock.lock();
try {
System.out.println("获得了锁");
} finally {
lock.unlock();
}
}, "t1");
lock.lock();
System.out.println("获得了锁");
t1.start();
try {
sleep(1);
t1.interrupt();
System.out.println("执行打断");
sleep(1);
} finally {
System.out.println("释放了锁");
lock.unlock();
}
4.锁超时
ReentranLock支持可打断,其实就是为了避免死等,这样就可以减少死锁的发生。实际上可打断这种方式属于一种被动的避免死等,是由其它线程interrupt来打断。
而锁超时是主动的方式避免死等的手段。
获取锁用tryLock()方法,即尝试获得锁,如果成功了,它就获得锁,如果失败了,它就可以不去进入阻塞队列等待,它就会返回false,表示没有获得锁。
立刻失败
public static void main(String[] args) {
ReentrantLock lock = new ReentrantLock();
Thread t1 = new Thread(() -> {
System.out.println("启动...");
if (!lock.tryLock()) {
System.out.println("获取不到锁,立刻失败,返回");
return;
}
try {
System.out.println("获得了锁");
} finally {
lock.unlock();
}
}, "t1");
lock.lock();
System.out.println("获得了锁");
t1.start();
try {
try {
sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
} finally {
lock.unlock();
}
}
获得了锁
启动...
获取不到锁,立刻失败,返回
超时失败
lock.tryLock(1,TimeUnit.SECONDS)表示尝试等待1s,如果主线程不释放锁,那么它就会返回false,如果释放了锁,那么它就会返回true.tryLock也支持被打断,被打断时报异常。
ReentrantLock lock = new ReentrantLock();
Thread t1 = new IWIEjWObDThread(() -> {
log.debug("启动...");
try {
if (!lock.tryLock(1, TimeUnit.SECONDS)) {
log.debug("获取等待 1s 后失败,返回");
return;
}
} catch (InterruptedException e) {
e.printStackTrace();
}
try {
log.debug("获得了锁");
} finally {
lock.unlock();
}
}, "t1");
lock.lock();
log.debug("获得了锁");
t1.start();
try {
sleep(2);
} finally {
lock.unlock();
}
输出
18:19:40.537 [main] c.TestTimeout - 获得了锁
18:19:40.544 [t1] c.TestTimeout - 启动...
18:19:41.547 [t1] c.TestTimeout - 获取等待 1s 后失败,返回
5.公平锁
对于synchronized来说,它是不公平的锁。当一个线程持有锁,其他线程就会进入阻塞队列等待,当锁的持有者释放锁的时候,这些线程就会一拥而上,谁先抢到,谁就成为monitor的主人,而不会按照先来先得的规则。
ReentrantLock 默认是不公平的
ReentrantLock有一个带参构造方法。默认是非公平的。
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
我们可以通过布尔值改成真,来保证它的公平性。即将来阻塞队列里的线程,争抢锁的时候会按照进入阻塞队列的顺序执行,先到先得。
6.条件变量 Condition
synchronized 中也有条件变量,就是我们讲原理时那个 waitSet 休息室,当条件不满足时进入 waitSet 等待
ReentrantLock 的条件变量比 synchronized 强大之处在于,它是支持多个条件变量的,这就好比
synchronized 是那些不满足条件的线程都在一间休息室等消息
而 ReentrantLock 支持多间休息室,有专门等烟的休息室、专门等早餐的休息室、唤醒时也是按休息室来唤醒
使用要点:
await 前需要获得锁
await 执行后,会释放锁,进入 conditionObject 等待
await 的线程被唤醒(或打断、或超时)取重新竞争 lock 锁
竞争 lock 锁成功后,从 await 后继续执行
signal 相当于 notify,signalAll 相当于 notifyAll
static ReentrantLock lock = new ReentrantLock();
static Condition waitCigaretteQueue = lock.newCondition();
static Condition waitbreakfastQueue = lock.newCondition();
static volatile boolean hasCigrette = false;
static volatile boolean hasBreakfast = false;
public static void main(String[] args) {
new Thread(() -> {
try {
lock.lock();
while (!hasCigrette) {
try {
waitCigaretteQueue.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug("等到了它的烟");
} finally {
lock.unlock();
}
}).start();
new Thread(() -> {
try {
lock.lock();
while (!hasBreakfast) {
try {
waitbreakfastQueue.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug("等到了它的早餐");
} finally {
lock.unlock();
}
}).start();
sleep(1);
sendBreakfast();
sleep(1);
sendCigarette();
}
private static void sendCigarette() {
lock.lock();
try {
log.debug("送烟来了");
hasCigrette = true;
waitCigaretteQueue.signal();
} finally {
lock.unlock();
}
}
private static void sendBreakfast() {
lock.lock();
try {
log.debug("送早餐来了");
hasBreakfast = true;
waitbreakfastQueue.signal();
} finally {
lock.unlock();
}
}
输出
18:52:27.680 [main] c.TestCondition - 送早餐来了
18:52:27.682 [Thread-1] c.TestCondition - 等到了它的早餐
18:52:28.683 [main] c.TestCondition - 送烟来了
18:52:28.683 [Thread-0] c.TestCondition - 等到了它的烟
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~