Java实现矩阵乘法以及优化的方法实例

网友投稿 338 2022-11-04


Java实现矩阵乘法以及优化的方法实例

传统的矩阵乘法实现

首先,两个矩阵能够相乘,必须满足一个前提:前一个矩阵的行数等于后一个矩阵的列数。

第一个矩阵的第m行和第二个矩阵的第n列的乘积和即为乘积矩阵第m行第n列的值,可用如下图像表示这个过程。

矩阵乘法过程展示

C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1] + A[1][2] * B[2][1] + A[1][3] * B[3][1] + A[1][4] * B[4][1]

而用java实现该过程的传统方法就是按照该规则实现一个三重循环,把各项乘积累加:

public int[][] multiply(int[][] mat1, int[][] mat2){

int m = mat1.length, n = mat2[0].length;

int[][] mat = new int[m][n];

for(int i = 0; i < m; i++){

for(int j = 0; j < n; j++){

for(int k = 0; k < mat1[0].length; k++){

mat[i][j] += mat1[i][k] * mat2[k][j];

}

}

}

return mat;

}

可以看出该方法的时间复杂度为O(n3),当矩阵维数比较大的时候程序就很容易超时。

优化方法(Strassen算法)

Strassen算法是由Volker Strassen在1966年提出的第一个时间复杂度低于O(n³)的矩阵乘法算法,其主要思想是通过分治FhhrS来实现矩阵乘法的快速运算,计算过程如图所示:

将一次矩阵乘法拆分成多个乘法与加法的结合

为什么这个方法会更快呢,我们知道,按照传统的矩阵乘法:

C11 = A11 * B11 +FhhrS A12 * B21

C12 = A11 * B12 + A12 * B22

C21 = A21 * B11 + A22 * B21

C22 = A21 * B12 + A22 * B22

我们需要8次矩阵乘法和4次矩阵加法,正是这8次乘法最耗时;而Strassen方法只需要7次矩阵乘法,尽管代价是矩阵加法次数变为18次,但是基于数量级考虑,18次加法仍然快于1次乘法。

public class Matrix {

private final Matrix[] _matrixArray;

private final int n;

private int element;

public Matrix(int n) {

this.n = n;

if (n != 1) {

this._matrixArray = new Matrix[4];

for (int i = 0; i < 4; i++) {

this._matrixArray[i] = new Matrix(n / 2);

}

} else {

this._matrixArray = null;

}

}

private Matrix(int n, boolean needInit) {

this.n = n;

if (n != 1) {

this._matrixArray = new Matrix[4];

} else {

this._matrixArray = null;

}

}

public void set(int i, int j, int a) {

if (n == 1) {

element = a;

} else {

int size = n / 2;

this._matrixArray[(i / size) * 2 + (j / size)].set(i % size, j % size, a);

}

}

public Matrix multi(Matrix m) {

Matrix result = null;

if (n == 1) {

result = new Matrix(1);

result.set(0, 0, (element * m.element));

} else {

result = new Matrix(n, false);

result._matrixArray[0] = P5(m).add(P4(m)).minus(P2(m)).add(P6(m));

result._matrixArray[1] = P1(m).add(P2(m));

result._matrixArray[2] = P3(m).add(P4(m));

result._matrixArray[3] = P5(m).add(P1(m)).minus(P3(m)).minus(P7(m));

}

return result;

}

public Matrix add(Matrix m) {

Matrix result = null;

if (n == 1) {

result = new Matrix(1);

result.set(0, 0, (element + m.element));

} else {

result = new Matrix(n, false);

result._matrixArray[0] = this._matrixArray[0].add(m._matrixArray[0]);

result._matrixArray[1] = this._matrixArray[1].add(m._matrixArray[1]);

result._matrixArray[2] = this._matrixArray[2].add(m._matrixArray[2]);

result._matrixArray[3] = this._matrixArray[3].add(m._matrixArray[3]);;

}

return result;

}

public Matrix minus(Matrix m) {

Matrix result = null;

if (n == 1) {

result = new Matrix(1);

result.set(0, 0, (element - m.element));

} else {

result = new Matrix(n, false);

result._matrixAhttp://rray[0] = this._matrixArray[0].minus(m._matrixArray[0]);

result._matrixArray[1] = this._matrixArray[1].minus(m._matrixArray[1]);

result._matrixArray[2] = this._matrixArray[2].minus(m._matrixArray[2]);

result._matrixArray[3] = this._matrixArray[3].minus(m._matrixArray[3]);;

}

return result;

}

protected Matrix P1(Matrix m) {

return _matrixArray[0].multi(m._matrixArray[1]).minus(_matrixArray[0].multi(m._matrixArray[3]));

}

protected Matrix P2(Matrix m) {

return _matrixArray[0].multi(m._matrixArray[3]).add(_matrixArray[1].multi(m._matrixArray[3]));

}

protected Matrix P3(Matrix m) {

return _matrixArray[2].multi(m._matrixArray[0]).add(_matrixArray[3].multi(m._matrixArray[0]));

}

protected Matrix P4(Matrix m) {

return _matrixArray[3].multi(m._matrixArray[2]).minus(_matrixArray[3].multi(m._matrixArray[0]));

}

protected Matrix P5(Matrix m) {

return (_matrixArray[0].add(_matrixArray[3])).multi(m._matrixArray[0].add(m._matrixArray[3]));

}

protected Matrix P6(Matrix m) {

return (_matrixArray[1].minus(_matrixArray[3])).multi(m._matrixArray[2].add(m._matrixArray[3]));

}

protected Matrix P7(Matrix m) {

return (_matrixArray[0].minus(_matrixArray[2])).multi(m._matrixArray[0].add(m._matrixArray[1]));

}

public int get(int i, int j) {

if (n == 1) {

return element;

} else {

int size = n / 2;

return this._matrixArray[(i / size) * 2 + (j / size)].get(i % size, j % size);

}

}

public void display() {

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

System.out.print(get(i, j));

System.out.print(" ");

}

System.out.println();

}

}

public static void main(String[] args) {

Matrix m = new Matrix(2);

Matrix n = new Matrix(2);

m.set(0, 0, 1);

m.set(0, 1, 3);

m.set(1, 0, 5);

m.set(1, 1, 7);

n.set(0, 0, 8);

n.set(0, 1, 4);

n.set(1, 0, 6);

n.set(1, 1, 2);

Matrix res = m.multi(n);

res.display();

}

}

总结


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:顺丰单号查询快递单号API(顺丰单号查询快递单号查询官网)
下一篇:MongoDB集群
相关文章

 发表评论

暂时没有评论,来抢沙发吧~