java中的接口是类吗
391
2022-11-04
Linux内存是怎么工作的?
一、内存映射
我们通常所说的内存容量,其实指的是物理内存。物理内存也称为主存,大多数计算机用的主存都是动态随机访问内存(DRAM)。只有内核才可以直接访问物理内存。那么,进程要访问内存时,该怎么办呢?
Linux 内核给每个进程都提供了一个独立的虚拟地址空间,并且这个地址空间是连续的。这样,进程就可以很方便地访问内存,更确切地说是访问虚拟内存。
虚拟地址空间的内部又被分为内核空间和用户空间两部分,不同字长(也就是单个 CPU 指令可以处理数据的最大长度)的处理器,地址空间的范围也不同。比如最常见的 32 位和 64 位系统
通过这里可以看出,32 位系统的内核空间占用 1G,位于最高处,剩下的 3G 是用户空间。而 64 位系统的内核空间和用户空间都是 128T,分别占据整个内存空间的最高和最低处,剩下的中间部分是未定义的。
进程在用户态时,只能访问用户空间内存;只有进入内核态后,才可以访问内核空间内存。虽然每个进程的地址空间都包含了内核空间,但这些内核空间,其实关联的都是相同的物理内存。这样,进程切换到内核态后,就可以很方便地访问内核空间内存。
既然每个进程都有一个这么大的地址空间,那么所有进程的虚拟内存加起来,自然要比实际的物理内存大得多。所以,并不是所有的虚拟内存都会分配物理内存,只有那些实际使用的虚拟内存才分配物理内存,并且分配后的物理内存,是通过内存映射来管理的。
内存映射,其实就是将虚拟内存地址映射到物理内存地址。为了完成内存映射,内核为每个进程都维护了一张页表,记录虚拟地址与物理地址的映射关系
页表实际上存储在 CPU 的内存管理单元 MMU 中,这样,正常情况下,处理器就可以直接通过硬件,找出要访问的内存。
而当进程访问的虚拟地址在页表中查不到时,系统会产生一个缺页异常,进入内核空间分配物理内存、更新进程页表,最后再返回用户空间,恢复进程的运行。
TLB(Translation Lookaside Buffer,转译后备缓冲器)会影响 CPU 的内存访问性能,在这里其实就可以得到解释。
TLB 其实就是 MMU 中页表的高速缓存。由于进程的虚拟地址空间是独立的,而 TLB 的访问速度又比 MMU 快得多,所以,通过减少进程的上下文切换,减少 TLB 的刷新次数,就可以提高 TLB 缓存的使用率,进而提高 CPU 的内存访问性能。
MMU 并不以字节为单位来管理内存,而是规定了一个内存映射的最小单位,也就是页,通常是 4 KB 大小。这样,每一次内存映射,都需要关联 4 KB 或者 4KB 整数倍的内存空间。
页的大小只有 4 KB ,导致的另一个问题就是,整个页表会变得非常大。比方说,仅 32 位系统就需要 100 多万个页表项(4GB/4KB),才可以实现整个地址空间的映射。为了解决页表项过多的问题,Linux 提供了两种机制,也就是多级页表和大页(HugePage)。
多级页表就是把内存分成区块来管理,将原来的映射关系改成区块索引和区块内的偏移。由于虚拟内存空间通常只用了很少一部分,那么,多级页表就只保存这些使用中的区块,这样就可以大大地减少页表的项数。
Linux 用的正是四级页表来管理内存页,如下图所示,虚拟地址被分为 5 个部分,前 4 个表项用于选择页,而最后一个索引表示页内偏移。
再看大页,顾名思义,就是比普通页更大的内存块,常见的大小有 2MB 和 1GB。大页通常用在使用大量内存的进程上,比如 Oracle、DPDK 等。
通过这些机制,在页表的映射下,进程就可以通过虚拟地址来访问物理内存了。那么具体到一个 Linux 进程中,这些内存又是怎么使用的呢?
二、虚拟内存空间分布
首先,我们需要进一步了解虚拟内存空间的分布情况。最上方的内核空间不用多讲,下方的用户空间内存,其实又被分成了多个不同的段。以 32 位系统为例,如图:
通过这张图可以看到,用户空间内存,从低到高分别是五种不同的内存段。
只读段:包括代码和常量等数据段:包括全局变量等堆:包括动态分配的内存,从低地址开始向上增长文件映射段:包括动态库、共享内存等,从高地址开始向下增长栈:包括局部变量和函数调用的上下文等。栈的大小是固定的,一般是8MB
在这五个内存段中,堆和文件映射段的内存是动态分配的。比如说,使用 C 标准库的 malloc() 或者 mmap() ,就可以分别在堆和文件映射段动态分配内存。
问题:其实 64 位系统的内存分布也类似,只不过内存空间要大得多。那么,更重要的问题来了,内存究竟是怎么分配的呢?
三、内存分配与回收
malloc() 是 C 标准库提供的内存分配函数,对应到系统调用上,有两种实现方式,即 brk() 和 mmap()。
对小块内存(小于 128K),C 标准库使用 brk() 来分配,也就是通过移动堆顶的位置来分配内存。这些内存释放后并不会立刻归还系统,而是被缓存起来,这样就可以重复使用。
而大块内存(大于 128K),则直接使用内存映射 mmap() 来分配,也就是在文件映射段找一块空闲内存分配出去。
3.1、两种方式优缺点
brk()方式的缓存,可以减少缺页异常的发生,提高内存访问效率。不过,由于这些内存没有归还系统,在内存工作繁忙时,频繁的内存分配和释放会造成内存碎片。
mmap()方式分配的内存,会在释放时直接归还系统,所以每次 mmap 都会发生缺页异常。在内存工作繁忙时,频繁的内存分配会导致大量的缺页异常,使内核的管理负担增大。这也是 malloc 只对大块内存使用 mmap 的原因。
当这两种调用发生后,其实并没有真正分配内存。这些内存,都只在首次访问时才分配,也就是通过缺页异常进入内核中,再由内核来分配内存。
Linux使用伙伴系统来管理内存分配。伙伴系统以页为单位管理内存,并会通过相邻页的合并,减少内存碎片化(比如brk方式造成的内存碎片)。
3.2、比页更小的对象,如不到1K时,该如何分配内存
实际系统运行中,确实有大量比页还小的对象,如果为它们也分配单独的页,那就太浪费内存了。
所以,在用户空间,malloc 通过 brk() 分配的内存,在释放时并不立即归还系统,而是缓存起来重复利用。在内核空间,Linux 则通过 slab 分配器来管理小内存。你可以把 slab 看成构建在伙伴系统上的一个缓存,主要作用就是分配并释放内核中的小对象。
对内存来说,如果只分配而不释放,就会造成内存泄漏,甚至会耗尽系统内存。所以,在应用程序用完内存后,还需要调用 free() 或 unmap() ,来释放这些不用的内存。
3.3、内存回收
当然,系统也不会任由某个进程用完所有内存。在发现内存紧张时,系统就会通过一系列机制来回收内存,比如下面这三种方式:
回收缓存:比如使用 LRU(Least Recently Used)算法,回收最近使用最少的内存页面;回收不常访问的内存,把不常用的内存通过交换分区直接写到磁盘中;杀死进程,内存紧张时系统还会通过OOM(Out of Memory),直接杀掉占用大量内存的进程。
第二种方式回收不常访问的内存时,会用到交换分区(以下简称 Swap)。Swap 其实就是把一块磁盘空间当成内存来用。它可以把进程暂时不用的数据存储到磁盘中(这个过程称为换出),当进程访问这些内存时,再从磁盘读取这些数据到内存中(这个过程称为换入)。
所以,可以发现,Swap 把系统的可用内存变大了。不过要注意,通常只在内存不足时,才会发生 Swap 交换。并且由于磁盘读写的速度远比内存慢,Swap 会导致严重的内存性能问题。
第三种方式提到的 OOM(Out of Memory),其实是内核的一种保护机制。它监控进程的内存使用情况,并且使用 oom_score 为每个进程的内存使用情况进行评分:
一个进程消耗的内存越大,oom_score就越大;一个进程运行占用的CPU越多,oom_score就越小。
进程的 oom_score 越大,代表消耗的内存越多,也就越容易被 OOM 杀死,从而可以更好保护系统。
为了实际工作的需要,管理员可以通过 /proc 文件系统,手动设置进程的 oom_adj ,从而调整进程的 oom_score。
oom_adj 的范围是 [-17, 15],数值越大,表示进程越容易被 OOM 杀死;数值越小,表示进程越不容易被 OOM 杀死,其中 -17 表示禁止 OOM。
比如用下面的命令,就可以把 sshd 进程的 oom_adj 调小为 -16,这样, sshd 进程就不容易被 OOM 杀死。
echo -16 > /proc/$(pidof sshd)/oom_adj
四、如何查看内存使用情况
4.1、free工具
# 注意不同版本的free输出可能会有所不同$ free total used free shared buff/cache availableMem: 8169348 263524 6875352 668 1030472 7611064Swap: 0 0 0
free 输出的是一个表格,其中的数值都默认以字节为单位。表格总共有两行六列,这两行分别是物理内存 Mem 和交换分区 Swap 的使用情况,而六列中,每列数据的含义分别为:
第一列:total是总内存大小第二列:used是已使用内存的大小,包含了共享内存第三列:free是未使用内存的大小第四列:shared是共享内存的大小第五列:buff、cache是缓存和缓冲区的大小最后一列:available是新进程可用内存大小
注意:available 不仅包含未使用内存,还包括了可回收的缓存,所以一般会比未使用内存更大。不过,并不是所有缓存都可以回收,因为有些缓存可能正在使用中。
free显示的是整个系统的内存使用情况。如果想看进程的内存使用情况,可以用top或者ps等工具
# 按下M切换到内存排序$ top...KiB Mem : 8169348 total, 6871440 free, 267096 used, 1030812 buff/cacheKiB Swap: 0 total, 0 free, 0 used. 7607492 avail Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 430 root 19 -1 122360 35588 23748 S 0.0 0.4 0:32.17 systemd-journal 1075 root 20 0 771860 22744 11368 S 0.0 0.3 0:38.89 snapd 1048 root 20 0 170904 17292 9488 S 0.0 0.2 0:00.24 networkd-dispat 1 root 20 0 78020 9156 6644 S 0.0 0.1 0:22.92 systemd12376 azure 20 0 76632 7456 6420 S 0.0 0.1 0:00.01 systemd12374 root 20 0 107984 7312 6304 S 0.0 0.1 0:00.00 sshd...
top 输出界面的顶端,也显示了系统整体的内存使用情况,这些数据跟 free 类似,不再重复。接着看下面的内容,跟内存相关的几列数据,比如 VIRT、RES、SHR 以及 %MEM 等。
VIRT 是进程虚拟内存的大小,只要是进程申请过的内存,即便还没有真正分配物理内存,也会计算在内。RES 是常驻内存的大小,也就是进程实际使用的物理内存大小,但不包括 Swap 和共享内存。SHR 是共享内存的大小,比如与其他进程共同使用的共享内存、加载的动态链接库以及程序的代码段等。%MEM 是进程使用物理内存占系统总内存的百分比。
注意:第一,虚拟内存通常并不会全部分配物理内存。从上面的输出,可以发现每个进程的虚拟内存都比常驻内存大得多。第二,共享内存 SHR 并不一定是共享的,比方说,程序的代码段、非共享的动态链接库,也都算在 SHR 里。当然,SHR 也包括了进程间真正共享的内存。所以在计算多个进程的内存使用时,不要把所有进程的 SHR 直接相加得出结果。
五、总结
对于普通进程来说,它能看到的其实是内核提供的虚拟内存,这些虚拟内存还需要通过页表,由系统映射为物理内存。当进程通过malloc()申请内存后,内存并不会立即分配,而是首次访问时,通过缺页异常陷入内核中分配内存。由于进程的虚拟地址空间比物理内存大很多,Linux提供了一系列机制,应对内存不足的问题,比如缓存回收、交换分区swap以及OOM等。当需要了解系统或进程的内存使用情况时,可以用free、top、ps等性能工具。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~