使用java + selenium + OpenCV破解网易易盾滑动验证码的示例

网友投稿 672 2022-11-04


使用java + selenium + OpenCV破解网易易盾滑动验证码的示例

网易易盾:dun.163.com

* 验证码地址:https://dun.163.com/trial/jigsaw

* 使用OpenCv模板匹配

* java + Selenium + OpenCV

产品样例

接下来就是见证奇迹的时刻!

注意!!!

在模拟滑动时不能按照相同速度或者过快的速度滑动,需要向人滑动时一样先快后慢,这样才不容易被识别。

模拟滑动代码↓↓↓

/**

* 模拟人工移动

* @param driver

* @param element页面滑块

* @param distance需要移动距离

*/

public static void move(WebDriver driver, WebElement element, int distance) throws InterruptedException {

int randomTime = 0;

if (distance > 90) {

randomTime = 250;

} else if (distance > 80 && distance <= 90) {

randomTime = 150;

}

List track = getMoveTrack(distance - 2);

int moveY = 1;

try {

Actions actions = new Actions(driver);

actions.clickAndHold(element).perform();

Thread.sleep(200);

for (int i = 0; i < track.size(); i++) {

actions.moveByOffset(track.get(i), moveY).perform();

Thread.sleep(new Random().nextInt(300) + randomTime);

}

Thread.sleep(200);

actions.release(element).perform();

} catch (Exception e) {

e.printStackTrace();

}

}

/**

* 根据距离获取滑动轨迹

* @param distance需要移动的距离

* @return

*/

public static List getMoveTrack(int distance) {

List track = new ArrayList<>();// 移动轨迹

Random random = new Random();

int current = 0;// 已经移动的距离

int mid = (int) distance * 4 / 5;// 减速阈值

int a = 0;

int move = 0;// 每次循环移动的距离

while (true) {

a = random.nextInt(10);

if (current <= mid) {

move += a;// 不断加速

} else {

move -= a;

}

if ((current + move) < distance) {

track.add(move);

} else {

track.add(distance - current);

break;

}

current += move;

}

return track;

}

操作过程

/**

* 获取网易验证滑动距离

*

* @return

*/

public static String dllPath = "C://chrome//opencv_java440.dll";

public double getDistance(String bUrl, String sUrl) {

System.load(dllPath);

File bFile = new File("C:/EasyDun_b.png");

File sFile = new File("C:/EasyDun_s.png");

try {

FileUtils.copyURLToFile(new URL(bUrl), bFile);

FileUtils.copyURLToFile(new URL(sUrl), sFile);

BufferedImage bgBI = ImageIO.read(bFile);

BufferedImage sBI = ImageIO.read(sFile);

// 裁剪

cropImage(bgBI, sBI, bFile, sFile);

Mat s_mat = Imgcodecs.imread(sFile.getPath());

Mat b_mat = Imgcodecs.imread(bFile.getPath());

//阴影部分为黑底时需要转灰度和二值化,为白底时不需要

// 转灰度图像

Mat s_newMat = new Mat();

Imgproc.cvtColor(s_mat, s_newMat, Imgproc.COLOR_BGR2GRAY);

// 二值化图像

binaryzation(s_newMat);

Imgcodecs.imwrite(sFile.getPath(), s_newMat);

int result_rows = b_mat.rows() - s_mat.rows() + 1;

int result_cols = b_mat.cols() - s_mat.cols() + 1;

Mat g_result = new Mat(result_rows, result_cols, CvType.CV_32FC1);

Imgproc.matchTemplate(b_mat, s_mat, g_result, Imgproc.TM_SQDIFF); // 归一化平方差匹配法TM_SQDIFF 相关系数匹配法TM_CCOEFF

Core.normalize(g_result, g_result, 0, 1, Core.NORM_MINMAX, -1, new Mat());

Point matchLocation = new Point();

MinMaxLocResult mmlr = Core.minMaxLoc(g_result);

matchLocation = mmlr.maxLoc; // 此处使用maxLoc还是minLoc取决于使用的匹配算法

Imgproc.rectangle(b_mat, matchLocation, new Point(matchLocation.x + s_mat.cols(), matchLocation.y + s_mat.rows()), new Scalar(0, 255, 0, 0));

Imgcodecs.imwrite(bFile.getPath(), b_mat);

return matchLocation.x + s_mat.cols() - sBI.getWidth() + 12;

} catch (Throwable e) {

e.printStackTrace();

return 0;

} finally {

bFile.delete();

sFile.delete();

}

}

/**

* 图片亮度调整

*

* @param image

* @param param

* @throws IOException

*/

public void bloding(BufferedImage image, int param) throws IOException {

if (image == null) {

return;

} else {

int rgb, R, G, B;

for (int i = 0; i < image.getWidth(); i++) {

for (int j = 0; j < image.getHeight(); j++) {

rgb = image.getRGB(i, j);

R = ((rgb >> 16) & 0xff) - param;

G = ((rgb >> 8) & 0xff) - param;

B = (rgb & 0xff) - param;

rgb = ((clamp(255) & 0xff) << 24) | ((clamp(R) & 0xff) << 16) | ((clamp(G) & 0xff) << 8) | ((clamp(B) & 0xff));

image.setRGB(i, j, rgb);

}

}

}

}

// 判断a,r,g,b值,大于256返回256,小于0则返回0,0到256之间则直接返回原始值

private int clamp(int rgb) {

if (rgb > 255)

return 255;

if (rgb < 0)

return 0;

return rgb;

}

/**

* 生成半透明小图并裁剪

*

* @param image

* @return

*/

private void cropImage(BufferedImage bigImage, BufferedImage smallImage, File bigFile, File smallFile) {

int y = 0;

int h_ = 0;

try {

// 2 生成半透明图片

bloding(bigImage, 75);

for (int w = 0; w < smallImage.getWidth(); w++) {

for (int h = smallImage.getHeight() - 2; h >= 0; h--) {

int rgb = smallImage.getRGB(w, h);

int A = (rgb & 0xFF000000) >>> 24;

if (A >= 100) {

rgb = (127 << 24) | (rgb & 0x00ffffff);

smallImage.setRGB(w, h, rgb);

}

}

}

for (int h = 1; h < smallImage.getHeight(); h++) {

for (int w = 1; w < smallImage.getWidth(); w++) {

int rgb = smallImage.getRGB(w, h);

int A = (rgb & 0xFF000000) >>> 24;

if (A > 0) {

if (y == 0)

y = h;

h_ = h - y;

break;

}

}

}

smallImage = smallImage.getSubimage(0, y, smallImage.getWidth(), h_);

bigImage = bigImage.getSubimage(0, y, bigImage.getWidth(), h_);

ImageIO.write(bigImage, "png", bigFile);

ImageIO.write(smallImage, "png", smallFile);

} catch (Throwable e) {

System.out.println(e.toString());

}

}

/**

*

* @param mat

* 二值化图像

*/

public static void binaryzation(Mat mat) {

int BLACK = 0;

int WHITE = 255;

int ucThre = 0, ucThre_new = 127;

int nBack_count, nData_count;

int nBack_sum, nData_sum;

int nValue;

int i, j;

int width = mat.width(), height = mat.height();

// 寻找最佳的阙值

while (ucThre != ucThre_new) {

nBack_sum = nData_sum = 0;

nBack_count = nData_count = 0;

for (j = 0; j < height; ++j) {

for (i = 0; i < width; i++) {

nValue = (int) mat.get(j, i)[0];

if (nValue > ucThre_new) {

nBack_sum += nValue;

nBack_count++;

} else {

nData_sum += nValue;

nData_count++;

}

}

}

nBack_sum = nBack_sum / nBack_count;

nData_sum = nData_sum / nData_count;

ucThre = ucThre_new;

ucThre_new = (nBack_sum + nData_sum) / 2;

}

// 二值化处理

int nBlack = 0;

int nWhite = 0;

for (j = 0; j < height; ++j) {

for (i = 0; i < width; ++i) {

nValue = (int) mat.get(j, i)[0];

if (nValue > ucThre_new) {

mat.put(j, i, WHITE);

nWhite++;

} else {

mat.put(j, i, BLACK);

nBlack++;

}

}

}

// 确保白底黑字

if (nBlack > nWhite) {

for (j = 0; j < height; ++j) {

for (i = 0; i < width; ++i) {

nValue = (int) (mat.get(j, i)[0]);

if (nValue == 0) {

mat.put(j, i, WHITE);

} else {

mat.put(j, i, BLACK);

}

}

}

}

}

// 延时加载

private static WebElement waitWebElement(WebDriver driver, By by, int count) throws Exception {

WebElement webElement = null;

boohttp://lean isWait = false;

for (int k = 0; k < count; k++) {

try {

webElement = driver.findElement(by);

if (isWait)

System.out.println(" ok!");

return webElement;

} catch (org.openqa.selenium.NoSuchElementException ex) {

isWait = true;

if (k == 0)

System.out.print("waitWebElement(" + by.toString() + ")");

else

System.out.print(".");

Thread.sleep(50);

}

}

if (isWait)

System.out.println(" outTime!");

return null;

}

注意:有一个问题还没有解决,还无法区分阴影部分是黑色还是白色。 因为两种的情况不同,所以处理方式也不同。阴影部分为黑底时需要转灰度和二值化,为白底时不需要。黑底使用归一化平方差匹配算法 TM_SQDIFF ,而白底使用相关系数匹配算法 TM_CCOEFF。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:架构师学习笔记11--测试评审方法
下一篇:特快专递查询API(特快专递查询号码)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~