多平台统一管理软件接口,如何实现多平台统一管理软件接口
233
2022-11-04
浅谈为什么阿里巴巴要禁用Executors创建线程池
看阿里巴巴开发手册并发编程这块有一条:线程池不允许使用Executors去创建,而是通过ThreadPoolExecutor的方式,通过源码分析禁用的原因
写在前面
首先感谢大家在盖楼的间隙阅读本篇文章,通过阅读本篇文章你将了解到:
线程池的定义
Executors创建线程池的几种方式
ThreadPoolExecutor对象
线程池执行任务逻辑和线程池参数的关系
Executors创建返回ThreadPoolExecutor对象
OOM异常测试
如何定义线程池参数
如果只想知道原因可以直接拉到总结那
线程池的定义
管理一组工作线程。通过线程池复用线程有以下几点优点:
减fADjgiCwl少资源创建 => 减少内存开销,创建线程占用内存
降低系统开销 => 创建线程需要时间,会延迟处理的请求
提高稳定稳定性 => 避免无限创建线程引起的OutOfMemoryError【简称OOM】
Executors创建线程池的方式
根据返回的对象类型创建线程池可以分为三类:
创建返回ThreadPoolExecutor对象
创建返回ScheduleThreadPoolExecutor对象
创建返回ForkJoinPool对象
本文只讨论创建返回 ThreadPoolExecutor 对象
ThreadPoolExecutor对象
在介绍 Executors 创建线程池方法前先介绍一下 ThreadPoolExecutor ,因为这些创建线程池的静态方法都是返回 ThreadPoolExecutor 对象,和我们手动创建 ThreadPoolExecutor 对象的区别就是我们不需要自己传构造函数的参数。 ThreadPoolExecutor 的构造函数共有四个,但最终调用的都是同一个:
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue
ThreadFactory threadFactory,
RejectedExecutionHandler handler)
构造函数参数说明:
corePoolSize => 线程池核心线程数量
maximumPoolSize => 线程池最大数量
keepAliveTime => 空闲线程存活时间
unit => 时间单位
workQueue => 线程池所使用的缓冲队列
threadFactory => 线程池创建线程使用的工厂
handler => 线程池对拒绝任务的处理策略
线程池执行任务逻辑和线程池参数的关系
执行逻辑说明:
判断核心线程数是否已满,核心线程数大小和corePoolSize参数有关,未满则创建线程执行任务
若核心线程池已满,判断队列是否满,队列是否满和workQueue参数有关,若未满则加入队列中
若队列已满,判断线程池是否已满,线程池是否已满和maximumPoolSize参数有关,若未满创建线程执行任务
若线程池已满,则采用拒绝策略处理无法执执行的任务,拒绝策略和handler参数有关
Executors创建返回ThreadPoolExecutor对象
Executors 创建返回ThreadPoolExecutor对象的方法共有三种:
Executors#newCachedThreadPool => 创建可缓存的线程池
Executors#newSingleThreadExecutor => 创建单线程的线程池
Executors#newFixedThreadPool => 创建固定长度的线程池
Executors#newCachedThreadPool方法
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue
}
CachedThreadPool 是一个根据需要创建新线程的线程池
corePoolSize => 0,核心线程池的数量为0
maximumPoolSize => Integer.MAX_VALUE,线程池最大数量为Integer.MAX_VALUE,可以认为可以无限创建线程
keepAliveTime => 60L
unit => 秒
workQueue => SynchronousQueue
当一个任务提交时, corePoolSize 为0不创建核心线程, SynchronousQueue 是一个不存储元素的队列,可以理解为队里永远是满的,因此最终会创建非核心线程来执行任务。对于非核心线程空闲60s时将被回收。 因为 Integer.MAX_VALUE 非常大,可以认为是可以无限创建线程的,在资源有限的情况下容易引起OOM异常
Executors#newSingleThreadExecutor方法
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue
}
SingleThreadExecutor 是单线程线程池,只有一个核心线程
corePoolSize => 1,核心线程池的数量为1
maximumPoolSize => 1,线程池最大数量为1,即最多只可以创建一个线程,唯一的线程就是核心线程
keepAliveTime => 0L
unit => 毫秒
workQueue => LinkedBlockingQueuehttp://
当一个任务提交时,首先会创建一个核心线程来执行任务,如果超过核心线程的数量,将会放入队列中, 因为 LinkedBlockingQueue 是长度为 Integer.MAX_VALUE 的队列,可以认为是无界队列,因此往队列中可以插入无限多的任务,在资源有限的时候容易引起 OOM 异常 ,同时因为无界队列, maximumPoolSize 和 keepAliveTime 参数将无效,压根就不会创建非核心线程
Executors#newFixedThreadPool方法
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue
}
FixedThreadPool 是固定核心线程的线程池,固定核心线程数由用户传入
corePoolSize => 1,核心线程池的数量为1 maximumPoolSize => 1,只可以创建一个非核心线程 keepAliveTime => 0L unit => 秒 workQueue => LinkedBlockingQueue 它和 SingleThreadExecutor 类似,唯一的区别就是核心线程数不同,并且由于 使用的是 LinkedBlockingQueue ,在资源有限的时候容易引起 OOM 异常
总结:
corePoolSize => nThreads,核心线程池的数量为1
maximumPoolSize => nThreads,线程池最大数量为nThreads,即最多只可以创建nThreads个线程
keepAliveTime => 0L
unit => 毫秒
workQueue => LinkedBlockingQueue
它和SingleThreadExecutor类似,唯一的区别就是核心线程数不同,并且由于使用的是LinkedBlockingQueue,在资源有限的时候容易引起OOM异常
这就是为什么禁止使用 Executors 去创建线程池,而是推荐自己去创建 ThreadPoolExecutor 的原因
OOM异常测试
理论上会出现 OOM 异常,必须测试一波验证之前的说法: 测试类:TaskTest.java
public class TaskTest {
public static void main(String[] args) {
ExecutorService es = Executors.newCachedThreadPool();
int i = 0;
while (true) {
es.submit(new Task(i++));
}
}
}
使用 Executors 创建的 CachedThreadPool ,往线程池中无限添加线程 在启动测试类之前先将 JVM 内存调整小一点,不然很容易将电脑跑出问题【别问我为什么知道,是铁憨憨甜没错了!!!】,在 idea 里: Run -> Edit Configurations
参数说明:
-Xms10M => Java Heap内存初始化值
-Xmx10M => Java Heap内存最大值
运行结果:
Exception: java.lang.OutOfMemoryError thrown from the UncaughtExceptionHandler in thread "main"
Disconnected from the target VM, address: '127.0.0.1:60416', transport: 'socket'
创建到3w多个线程的时候开始报 OOM 错误
另外两个线程池就不做测试了,测试方法一致,只是创建的线程池不一样
如何定义线程池参数
CPU密集型 => 线程池的大小推荐为 CPU 数量 + 1, CPU 数量可以根据 Runtime.availableProcessors 方法获取
IO密集型 => CPU 数量 * CPU 利用率 * (1 + 线程等待时间/线程CPU时间)
混合型 => 将任务分为 CPU 密集型和 IO 密集型,然后分别使用不同的线程池去处理,从而使每个线程池可以根据各自的工作负载来调整
阻塞队列 => 推荐使用有界队列,有界队列有助于避免资源耗尽的情况发生
拒绝策略 => 默认采用的是 AbortPolicy 拒绝策略,直接在程序中抛出 RejectedExecutionException 异常【因为是运行时异常,不强制 catch 】,这种处理方式不够优雅。处理拒绝策略有以下几种比较推荐:
在程序中捕获 RejectedExecutionException 异常,在捕获异常中对任务进行处理。针对默认拒绝策略
使用 CallerRunsPolicy 拒绝策略,该策略会将任务交给调用execute的线程执行【一般为主线程】,此时主线程将在一段时间内不能提交任何任务,从而使工作线程处理正在执行的任务。此时提交的线程将被保存在 TCP 队列中,TCP队列满将会影响客户端,这是一种平缓的性能降低
自定义拒绝策略,只需要实现 RejectedExecutionHandler 接口即可
如果任务不是特别重要,使用 DiscardPolicy 和 DiscardOldestPolicy 拒绝策略将任务丢弃也是可以的
如果使用Executors的静态方法创建 ThreadPoolExecutor 对象,可以通过使用 Semaphore 对任务的执行进行限流也可以避免出现 OOM 异常
由于线程池参数定义经验较少,都是理论知识,欢迎有经验的大佬补充
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~