窗口函数详细用法(c语言窗口函数)

网友投稿 326 2022-06-16


窗口函数与分析函数

应用场景:

(1)用于分区排序

(2)动态Group By

(3)Top N

(4)累计计算

(5)层次查询

窗口函数

FIRST_VALUE:取分组内排序后,截止到当前行,第一个值

LAST_VALUE:取分组内排序后,截止到当前行,最后一个值

LEAD(col,n,DEFAULT) :用于统计窗口内往下第n行值。第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)

LAG(col,n,DEFAULT) :与lead相反,用于统计窗口内往上第n行值。第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)

OVER从句

1、使用标准的聚合函数COUNT、SUM、MIN、MAX、AVG

2、使用PARTITION BY语句,使用一个或者多个原始数据类型的列

3、使用PARTITION BY与ORDER BY语句,使用一个或者多个数据类型的分区或者排序列

4、使用窗口规范,窗口规范支持以下格式:

(ROWS | RANGE) BETWEEN (UNBOUNDED | [num]) PRECEDING AND ([num] PRECEDING | CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING)

(ROWS | RANGE) BETWEEN CURRENT ROW AND (CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING)

(ROWS | RANGE) BETWEEN [num] FOLLOWING AND (UNBOUNDED | [num]) FOLLOWING

当ORDER BY后面缺少窗口从句条件,窗口规范默认是 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW.

当ORDER BY和窗口从句都缺失, 窗口规范默认是 ROW BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

OVER从句支持以下函数, 但是并不支持和窗口一起使用它们。

Ranking函数: Rank, NTile, DenseRank, CumeDist, PercentRank.

Lead 和 Lag 函数。

分析函数

ROW_NUMBER() 从1开始,按照顺序,生成分组内记录的序列,比如,按照pv降序排列,生成分组内每天的pv名次,ROW_NUMBER()的应用场景非常多,再比如,获取分组内排序第一的记录;获取一个session中的第一条refer等。

RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位

DENSE_RANK() 生成数据项在分组中的排名,排名相等会在名次中不会留下空位

CUME_DIST 小于等于当前值的行数/分组内总行数。比如,统计小于等于当前薪水的人数,所占总人数的比例

PERCENT_RANK 分组内当前行的RANK值-1/分组内总行数-1

NTILE(n) 用于将分组数据按照顺序切分成n片,返回当前切片值,如果切片不均匀,默认增加第一个切片的分布。NTILE不支持ROWS BETWEEN,比如 NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)。

Hive2.1.0及以后支持Distinct

在聚合函数(SUM, COUNT and AVG)中,支持distinct,但是在ORDER BY 或者 窗口限制不支持。

COUNT(DISTINCT a) OVER (PARTITION BY c)

Hive 2.2.0中在使用ORDER BY和窗口限制时支持distinct

COUNT(DISTINCT a) OVER (PARTITION BY c ORDER BY d ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)

Hive2.1.0及以后支持在OVER从句中支持聚合函数

SELECT rank() OVER (ORDER BY sum(b)) FROM T GROUP BY a;

测试数据集:

## COUNT、SUM、MIN、MAX、AVG select user_id,

user_type,

sales, --默认为从起点到当前行 sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc) AS sales_1, --从起点到当前行,结果与sales_1不同。 sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS sales_2, --当前行+往前3行 sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS sales_3, --当前行+往前3行+往后1行 sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS sales_4, --当前行+往后所有行 sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS sales_5, --分组内所有行 SUM(sales) OVER(PARTITION BY user_type) AS sales_6 from order_detail order by user_type,

sales,

user_id

+----------+------------+--------+----------+----------+----------+----------+----------+----------+--+ | user_id | user_type | sales | sales_1 | sales_2 | sales_3 | sales_4 | sales_5 | sales_6 |

+----------+------------+--------+----------+----------+----------+----------+----------+----------+--+ | liiu | new | 1 | 2 | 2 | 2 | 4 | 22 | 23 |

| qibaqiu | new | 1 | 2 | 1 | 1 | 2 | 23 | 23 |

| zhangsa | new | 2 | 4 | 4 | 4 | 7 | 21 | 23 |

| wanger | new | 3 | 7 | 7 | 7 | 12 | 19 | 23 |

| lilisi | new | 5 | 17 | 17 | 15 | 21 | 11 | 23 |

| qishili | new | 5 | 17 | 12 | 11 | 16 | 16 | 23 |

| wutong | new | 6 | 23 | 23 | 19 | 19 | 6 | 23 |

| lisi | old | 1 | 1 | 1 | 1 | 3 | 6 | 6 |

| wangshi | old | 2 | 3 | 3 | 3 | 6 | 5 | 6 |

| liwei | old | 3 | 6 | 6 | 6 | 6 | 3 | 6 |

+----------+------------+--------+----------+----------+----------+----------+----------+----------+--+ 注意:

结果和ORDER BY相关,默认为升序

如果不指定ROWS BETWEEN,默认为从起点到当前行;

如果不指定ORDER BY,则将分组内所有值累加;

关键是理解ROWS BETWEEN含义,也叫做WINDOW子句:

PRECEDING:往前

FOLLOWING:往后

CURRENT ROW:当前行

UNBOUNDED:无界限(起点或终点)

UNBOUNDED PRECEDING:表示从前面的起点

UNBOUNDED FOLLOWING:表示到后面的终点

其他COUNT、AVG,MIN,MAX,和SUM用法一样。

## first_value与last_value select

user_id,

user_type,

ROW_NUMBER() OVER(PARTITION BY user_type ORDER BY sales) AS row_num,

first_value(user_id) over (partition by user_type order by sales desc) as max_sales_user,

first_value(user_id) over (partition by user_type order by sales asc) as min_sales_user,

last_value(user_id) over (partition by user_type order by sales desc) as curr_last_min_user,

last_value(user_id) over (partition by user_type order by sales asc) as curr_last_max_user

from

order_detail;

+----------+------------+----------+-----------------+-----------------+---------------------+---------------------+--+ | user_id | user_type | row_num | max_sales_user | min_sales_user | curr_last_min_user | curr_last_max_user | +----------+------------+----------+-----------------+-----------------+---------------------+---------------------+--+ | wutong | new | 7 | wutong | qibaqiu | wutong | wutong | | lilisi | new | 6 | wutong | qibaqiu | qishili | lilisi | | qishili | new | 5 | wutong | qibaqiu | qishili | lilisi | | wanger | new | 4 | wutong | qibaqiu | wanger | wanger | | zhangsa | new | 3 | wutong | qibaqiu | zhangsa | zhangsa | | liiu | new | 2 | wutong | qibaqiu | qibaqiu | liiu | | qibaqiu | new | 1 | wutong | qibaqiu | qibaqiu | liiu | | liwei | old | 3 | liwei | lisi | liwei | liwei | | wangshi | old | 2 | liwei | lisi | wangshi | wangshi | | lisi | old | 1 | liwei | lisi | lisi | lisi | +----------+------------+----------+-----------------+-----------------+---------------------+---------------------+--+ ## lead与lag select

user_id,device_id,

lead(device_id) over (order by sales) as default_after_one_line,

lag(device_id) over (order by sales) as default_before_one_line,

lead(device_id,2) over (order by sales) as after_two_line,

lag(device_id,2,'abc') over (order by sales) as before_two_line

from

order_detail;

+----------+-------------+-------------------------+--------------------------+-----------------+------------------+--+ | user_id | device_id | default_after_one_line | default_before_one_line | after_two_line | before_two_line |

+----------+-------------+-------------------------+--------------------------+-----------------+------------------+--+

| qibaqiu | fds | fdsfagwe | NULL | 543gfd | abc | | liiu | fdsfagwe | 543gfd | fds | f332 | abc |

| lisi | 543gfd | f332 | fdsfagwe | dfsadsa323 | fds | | wangshi | f332 | dfsadsa323 | 543gfd | hfd | fdsfagwe |

| zhangsa | dfsadsa323 | hfd | f332 | 65ghf | 543gfd | | liwei | hfd | 65ghf | dfsadsa323 | fds | f332 |

| wanger | 65ghf | fds | hfd | dsfgg | dfsadsa323 | | qishili | fds | dsfgg | 65ghf | 543gdfsd | hfd |

| lilisi | dsfgg | 543gdfsd | fds | NULL | 65ghf | | wutong | 543gdfsd | NULL | dsfgg | NULL | fds |

+----------+-------------+-------------------------+--------------------------+-----------------+------------------+--+

## RANK、ROW_NUMBER、DENSE_RANK select

user_id,user_type,sales,

RANK() over (partition by user_type order by sales desc) as r,

ROW_NUMBER() over (partition by user_type order by sales desc) as rn,

DENSE_RANK() over (partition by user_type order by sales desc) as dr

from

order_detail;

+----------+------------+--------+----+-----+-----+--+ | user_id | user_type | sales | r | rn | dr |

+----------+------------+--------+----+-----+-----+--+

| wutong | new | 6 | 1 | 1 | 1 | | qishili | new | 5 | 2 | 2 | 2 |

| lilisi | new | 5 | 2 | 3 | 2 | | wanger | new | 3 | 4 | 4 | 3 |

| zhangsa | new | 2 | 5 | 5 | 4 | | qibaqiu | new | 1 | 6 | 6 | 5 |

| liiu | new | 1 | 6 | 7 | 5 | | liwei | old | 3 | 1 | 1 | 1 |

| wangshi | old | 2 | 2 | 2 | 2 | | lisi | old | 1 | 3 | 3 | 3 |

+----------+------------+--------+----+-----+-----+--+

## NTILE

select

user_type,sales,

--分组内将数据分成2片

NTILE(2) OVER(PARTITION BY user_type ORDER BY sales) AS nt2,

--分组内将数据分成3片

NTILE(3) OVER(PARTITION BY user_type ORDER BY sales) AS nt3,

--分组内将数据分成4片

NTILE(4) OVER(PARTITION BY user_type ORDER BY sales) AS nt4,

--将所有数据分成4片

NTILE(4) OVER(ORDER BY sales) AS all_nt4

from

order_detail

order by

user_type,

sales

+------------+--------+------+------+------+----------+--+

| user_type | sales | nt2 | nt3 | nt4 | all_nt4 | +------------+--------+------+------+------+----------+--+ | new | 1 | 1 | 1 | 1 | 1 |

| new | 1 | 1 | 1 | 1 | 1 | | new | 2 | 1 | 1 | 2 | 2 |

| new | 3 | 1 | 2 | 2 | 3 | | new | 5 | 2 | 2 | 3 | 4 |

| new | 5 | 2 | 3 | 3 | 3 | | new | 6 | 2 | 3 | 4 | 4 |

| old | 1 | 1 | 1 | 1 | 1 | | old | 2 | 1 | 2 | 2 | 2 |

| old | 3 | 2 | 3 | 3 | 2 | +------------+--------+------+------+------+----------+--+

求取sale前20%的用户ID

select

user_id

from

(

select

user_id,

NTILE(5) OVER(ORDER BY sales desc) AS nt

from

order_detail

)A

where nt=1; ## CUME_DIST、PERCENT_RANK select

user_id,user_type,sales,

--没有partition,所有数据均为1组

CUME_DIST() OVER(ORDER BY sales) AS cd1,

--按照user_type进行分组

CUME_DIST() OVER(PARTITION BY user_type ORDER BY sales) AS cd2

from

order_detail;

+----------+------------+--------+------+----------------------+--+ | user_id | user_type | sales | cd1 | cd2 | +----------+------------+--------+------+----------------------+--+ | liiu | new | 1 | 0.3 | 0.2857142857142857 | | qibaqiu | new | 1 | 0.3 | 0.2857142857142857 | | zhangsa | new | 2 | 0.5 | 0.42857142857142855 | | wanger | new | 3 | 0.7 | 0.5714285714285714 | | lilisi | new | 5 | 0.9 | 0.8571428571428571 | | qishili | new | 5 | 0.9 | 0.8571428571428571 | | wutong | new | 6 | 1.0 | 1.0 | | lisi | old | 1 | 0.3 | 0.3333333333333333 | | wangshi | old | 2 | 0.5 | 0.6666666666666666 | | liwei | old | 3 | 0.7 | 1.0 | +----------+------------+--------+------+----------------------+--+

select

user_type,sales

--分组内总行数

SUM(1) OVER(PARTITION BY user_type) AS s,

--RANK值

RANK() OVER(ORDER BY sales) AS r,

PERCENT_RANK() OVER(ORDER BY sales) AS pr,

--分组内

PERCENT_RANK() OVER(PARTITION BY user_type ORDER BY sales) AS prg

from

order_detail;

+----+-----+---------------------+---------------------+--+ | s | r | pr | prg |

+----+-----+---------------------+---------------------+--+

| 7 | 1 | 0.0 | 0.0 | | 7 | 1 | 0.0 | 0.0 |

| 7 | 4 | 0.3333333333333333 | 0.3333333333333333 | | 7 | 6 | 0.5555555555555556 | 0.5 |

| 7 | 8 | 0.7777777777777778 | 0.6666666666666666 | | 7 | 8 | 0.7777777777777778 | 0.6666666666666666 |

| 7 | 10 | 1.0 | 1.0 | | 3 | 1 | 0.0 | 0.0 |

| 3 | 4 | 0.3333333333333333 | 0.5 | | 3 | 6 | 0.5555555555555556 | 1.0 |

+----+-----+---------------------+---------------------+--+


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:CentOs7下安装mysql5.7.23(rpm安装)(centos7 yum安装mysql)
下一篇:MySQL的join buffer原理及如何提高查询效率(mysql的join和left join)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~