SpringBoot使用 druid 连接池来优化分页语句

网友投稿 377 2022-11-14


SpringBoot使用 druid 连接池来优化分页语句

一、前言

一个老系统随着数据量越来越大,我们察觉到部分分页语句拖慢了我们的速度。

鉴于老系统的使用方式,不打算使用pagehelper和mybatis-plus来处理,加上系统里使用得是druid连接池,考虑直接使用druid来优化。

二、老代码

老代码是使用得一个mybatis插件进行的分页,分页的核心代码如下:

// 记录统计的 sql

String countSql = "select count(0) from (" + sql+ ") tmp_count";

PreparedStatement countStmt = connection.prepareStatement(countSql);

BoundSql countBS = new BoundSql(mappedStatement.getConfiguration(), countSql, boundSql.getParameterMappings(), parameterObject);

setParameters(countStmt, mappedStatement, countBS,parameterObject);

在原始的 sql 外面包装了一个 count sql,当然很多插件都是这样做的。

三、druid 的 PagerUtil

示例 sql(有比较复杂的坐标计算)

SELECT g.*

, ROUND(6378.138 * 2 * ASIN(SQRT(POW(SIN((? * PI() / 180 - t.latitude * PI() / 180) / 2), 2) + COS(? * PI() / 180) * COS(t.latitude * PI() / 180) * POW(SIN((? * PI() / 180 - t.longitude * PI() / 180) / 2), 2))), 2) AS distancecd

, t.agentname, t.agentlogo, t.compaddress

FROM t_bas_integral_goods g

LEFT JOIN t_bas_agent t ON g.agentid = t.AGENTID

WHERE t.AGENTTYPE = '2'

AND t.pass = '0'

AND t.dl_type = '4'

AND g.type = 0

ORDER BY distancecd ASC

使用 Druid 生成 count sql:

String countSql = PagerUtigxMEWeals.count(sql, DbType.mysql);

System.out.println(countSql);

输出:

SELECT COUNT(*)

FROM t_bas_integral_goods g

LEFT JOIN t_bas_agent t ON g.agentid = t.AGENTID

WHERE t.AGENTTYPE = '2'

AND t.pass = '0'

AND t.dl_type = '4'

AND g.type = 0

我们可以看到优化后的 count sql 变得十分简洁,坐标计算的都已经丢弃掉。 注意:PagerUtil还有limit方法用来生成limit语句,感兴趣的同学可以自行试验。

四、改造mybatis分页插件

4.1 踩坑之路

看到上面 druid PagerUtils count 的优化效果,立马开始改造起来,起初只改掉了countSql,

String countSql = PagerUtils.count(sql, dbType);

PreparedStatement countStmt = connection.prepareStatement(countSql);

BoundSql countBS = new BoundSql(mappedStatement.getConfiguration(), countSql, boundSql.getParameterMappings(), parameterObject);

setParameters(countStmt, mappedStatement, countBS,parameterObject);

启动起来测试一番就发现报错了,因为原始 sql 中含有?变量,优化后的 sql 已经没有变量了,插件还会继续给他设置变量。 我们要怎么解决这个问题呢?

我们再回头看看pagehelper和mybatis-plus是怎么实现的!它俩都是基于jsqlparser对 sql 进行解析,然后处理。

要多gxMEWea加一个jsqlparser?没必要没必要,druid 的 sql 解析功能也是很强大的,我看了看PagerUtils.count方法的源码,大不了用 druid 的 sql 解析实现一遍。

看了看源码之后我陷入了沉思,有必要搞这么复杂么?有没有更好的方法?我反复 debug 发现了,DynamicSqlSource中有带#{xxx}这样的原始 sql,

那么我是否可以使用 druid 先对这种 mybatis 占位符的 sql 进行优化呢?我们来试试:

示例 sql:

select * from xxx where type = #{type} order by xx

输出:

SELECT COUNT(*)

FROM xxx

WHERE type = #{type}

完美!!! 4.2 继续踩坑

然而直接在 Mapper 上注解的 sql 还是有问题,拿不到原始的 sql,debug 发现 RawSqlSource 在构造器里就将 sql 处理成了?号挂参的形式。

@Select("select * from xxx where type = #{type} order by xx")

Object test(@Param("type") String type);

那么我只能看看能不能扩展它,我找到了它是在XMLLanguageDriver里进行初始化,这下好办了,因为我之前扩展过XMLLanguageDriver,它是可以自定义配置的。 于是我重写了RawSqlSource, 添加上了包含 mybatis 参数占位符(#{})的rawSql字段。

/**

* 原始 sql,用于方便 druid 工具进行分页

*

* @author L.cm

*/

public class MicaRawSqlSource implements SqlSource {

private final String rawSql;

private final SqlSource sqlSource;

public MicaRawSqlSource(Configuration configuration, SqlNode rootSqlNode, Class> parameterType) {

this(configuration, getSql(configuration, rootSqlNode), parameterType);

}

public MicaRawSqlSource(Configuration configuration, String sql, Class> parameterType) {

SqlSourceBuilder sqlSourceParser = new SqlSourceBuilder(configuration);

Class> clazz = parameterType == null ? Object.class : parameterType;

this.rawSql = sql;

this.sqlSource = sqlSourceParser.parse(sql, clazz, new HashMap<>());

}

// ... ...

}

自此全部逻辑已经走通,我们再来看看我们的PagePlugin核心代码:

// 进行分页

Configuration configuration = mappedStatement.getConfiguration();

SqlSourceBuilder sqlSourceParser = new SqlSourceBuilder(configuration);

Class> parameterType = parameterObject.getClass();

Connection connection = (Connection) invocation.getArgs()[0];

// 1. 对 sql 进行判断,如果没有 ? 号,则直接处理

String boundRawSql = boundSql.getSql();

if (boundRawSql.indexOf(CharPool.QUESTION_MARK) == -1) {

// 不包含 ? 号

String countSql = PagerUtils.count(boundRawSql, dbType);

SqlSource newSqlSource = sqlSourceParser.parse(countSql, parameterType, new HashMap<>());

BoundSql newBoundSql = newSqlSource.getBoundSql(parameterObject);

int count = getCount(connection, mappedStatement, parameterObject, newBoundSql);

StringBuilder sqlBuilder = new StringBuilder(boundRawSql);

Page page = getPageParam(parameterObject, sqlBuilder, count);

String pageSql = generatePageSql(sqlBuilder.toString(), dbType, page);

// 将分页sql语句反射回BoundSql.

setField(boundSql, "sql", pageSql);

return invocation.proceed();

}

// 2. 按 SqlSource 进行解析

SqlSource sqlSource = mappedStatement.getSqlSource();

// xml 中的动态 sql

int count;

if (sqlSource instanceof DynamicSqlSource) {

SqlNode rootSqlNode = PagePlugin.getField(sqlSource, "rootSqlNode");

DynamicContext context = new DynamicContext(configuration, parameterObject);

rootSqlNode.apply(context);

// 生成 count sql,带 #{xxx} 变量的 sql

String countSql = PagerUtils.count(context.getSql(), dbType);

SqlSource newSqlSource = sqlSourceParser.parse(countSql, parameterType, context.getBindings());

BoundSql newBoundSql = newSqlSource.getBoundSql(parameterObject);

count = getCount(connection, mappedStatement, parameterObject, newBoundSql);

} else if (sqlSource instanceof MicaRawSqlSource) {

String rawSql = ((MicaRawSqlSource) sqlSource).getRawSql();

DynamicContext context = new DynamicContext(configuration, parameterObject);

// 生成 count sql,带 #{xxx} 变量的 sql

String countSql = PagerUtils.count(rawSql, dbType);

SqlSource newSqlSource = sqlSourceParser.parse(countSql, parameterType, context.getBindings());

BoundSql newBoundSql = newSqlSource.getBoundSql(parameterObject);

count = getCount(connection, mappedStatement, parameterObject, newBoundSql);

} else {

throw new IllegalArgumentException("不支持的 sql 分页形式,请使用 xml 或者注解");

}

五、结论

整个老服务通过切换到 mica(深度定制)的微服务架构(演示环境仅仅在单服务低内存配置)之后速度提升效果明显,当然后面我们还会继续进行优化。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:JUnit4 Hamcrest匹配器常用方法总结
下一篇:Java实现Word/Pdf/TXT转html的示例
相关文章

 发表评论

暂时没有评论,来抢沙发吧~