java 单机接口限流处理方案
330
2022-12-07
本文目录一览:
通俗的说,流量控制就是控制用户请求的策略,主要包括:权限、限流、流量调度。
权限上一篇已经讲过了,这一篇讲限流,下一篇讲流量调度。
限流是指限制用户调用的频率(QPS/QPM)或者次数。
流量限制,站在用户或者运营的角度看,最直观能感受到的作用是——收费
各大主流开放平台的对外API,一般都有一些免费的额度,可以供个人测试用,一旦想大规模调用,就需要付费购买更大的额度(频率、次数),根据调用次数或者频率进行收费。一旦超过拥有的额度,就会被限制调用。
其实这才是限流最大的用处,只是用户或者运营同学无感,所以不太被大多数人了解。
网关后面是各个服务,各个服务的接口通过网关透出去给用户调用。理论上说,用户的流量是不可预知的,随时可能来一波,一旦流量的峰值超过了服务的承载能力,服务就挂了,比如有大新闻发生时的某浪微博,比如前些年的12306.
所以, 网关必须保证,放过去到达后端服务的流量一定不可以超过服务可以承载的上限 。这个上限,是网关和各个服务协商出来的。
由简到难,限流可以 分为单机限流、单集群限流、全集群限流 。
这里不讨论具体的如漏桶、令牌桶等限流算法,只说概念和思想。
单机限流的思想很简单,就是每个机器的限流值 x 机器数量 = 总的限流值。
举个例子,A用户的QPS限制是100,网关部署了10台机器,那么,每台机器限制10QPS就可以了。
先说好处,这种方法实现起来非常简单,每台机器在本地内存计算qps就可以了,超过阈值就拒流。
不过单机限流的缺陷也十分明显,主要体现在两点:
当网关部署的机器数量发生变化时,每台机器的限流值需要根据机器数调整。现实中,因为扩容、缩容、机器宕机等原因,机器数的变化是常有的事。
单机限流的前提是,每台网关承载的用户的流量是平均的,但是事实上,在某些时间,用户的流量并不是完全平均分布在每台机器上的。
举个例子:
10台机器,每台限qps10,其中3台每台实际qps是15,因为超限导致用户流量被拒。其余7台每台qps是7。这样用户总的qps = 15 * 3 + 7 * 7 = 94. 用户qps并没有超限,但是却有一部分流量被拒了,这样就很有问题。
实际上,单台限流的阈值也会设置的稍微大一些,以抵消流量不均的问题。
因为上面的问题, 单机限流通常作为一种兜底的备用手段,大多数时候用的还是集群限流 。
先来看一个示意图:
相比单机限流,集群限流的计数工作上移到redis集群内进行,解决了单机限流的缺陷。
但是集群限流也不是完美的,因为引入了redis,那么,当网关和redis之间的网络抖动、redis本身故障时,集群限流就失效了,这时候,还是得依靠单机限流进行兜底。
也就是说, 集群限流 + 单机限流配合,才是一个比稳妥的方案 。
接下来我们来思考这样一个问题:大型网关一般都是多机房、多地域部署的,当然,后端的服务也是多机房、多地域部署的,在保护服务这一点来说,集群限流是够用了。但是对用户来说,还是有一些问题:
比如,用户购买的QPS上限是30,我们的网关部署在中国北、中、南三个地域,那么这30QPS怎么分配呢?
平均肯定不行,用户的流量可能是明显不均衡的,比如用户的业务主要集中在中国北方,那么用户的流量大部分都会进入北方的网关,网关如果限制QPS为10的话,用户肯定来投诉。
那每个地域都限制为30行不行?也不行,如果用户的流量比较均匀的分布在各个地域,那么用户购买了30QPS,实际上可能使用了90QPS,这太亏了。
按照解决单机限流流量不均的思路,搞一个公共的redis集群来计数行不行?
也不行,受限于信号传播速度和天朝的广阔疆域,每个流量都计数,肯定不现实,rt太高会导致限流失去意义,带宽成本也会变得极其昂贵,对redis的规格要求也会很高。总之,很贵还解决不了问题。
有一种巧妙的解决办法是:本地集群阶梯计数 + 全集群检查。
还是刚才的例子:
限流阈值时90,那么三个地域各自计数,当本地域的数值达到30时,去其他两个地域取一次对方当前的计数值,三个地域的计数值加起来,如果超了,告诉另外两个地域超了,开始拒流。如果没超,本地QPS每上涨10,重复一次上述的动作。
这样就能有效的减少与redis的交互次数,同时实现了全地域真·集群限流。
当然,这种全地域集群限流,因为rt和阶梯计数间隔的存在,一定是不准的,但是,比单集群限流还是好很多。
当某个用户流量特别大的时候,redis计数就会遇到典型的热点key问题,导致redis集群单节点压力过大, 有两种办法可以解决这个问题:打散和抽样。
打散是指,把热点key加一些后缀,使其变成多个key,从而hash到不通的redis节点上,均摊压力。
比如热点key是abcd,那么打散后,key变成了abcd1、abcd2、abcd3、abcd4。技术时,轮流加1、2、3、4的后缀就可以了。
抽样是指,针对热点key,不是每个每个请求到来时都进行计数,而是进行一个抽样,比如每10个请求记一次数,这样redis的压力就会降低到十分之一。
说着把流量调度的也说完了哈哈,那下一篇再说说监控好了,顺便推一下我现在在用的国产网关:GOKU,来自Eolinker。我觉得比KONG好用,感兴趣的同学可以自行去了解一下。
假设你正在开发一个电商网站,那么这里会涉及到很多后端的微服务,比如会员、商品、推荐服务等等。
那么这里就会遇到一个问题,APP/Browser怎么去访问这些后端的服务? 如果业务比较简单的话,可以给每个业务都分配一个独立的域名(),但这种方式会有几个问题:
更好的方式是采用API网关,实现一个API网关接管所有的入口流量,类似Nginx的作用,将所有用户的请求转发给后端的服务器,但网关做的不仅仅只是简单的转发,也会针对流量做一些扩展,比如鉴权、限流、权限、熔断、协议转换、错误码统一、缓存、日志、监控、告警等,这样将通用的逻辑抽出来,由网关统一去做,业务方也能够更专注于业务逻辑,提升迭代的效率。
通过引入API网关,客户端只需要与API网关交互,而不用与各个业务方的接口分别通讯,但多引入一个组件就多引入了一个潜在的故障点,因此要实现一个高性能、稳定的网关,也会涉及到很多点。
API 注册
业务方如何接入网关?一般来说有几种方式。
协议转换
内部的API可能是由很多种不同的协议实现的,比如HTTP、Dubbo、GRPC等,但对于用户来说其中很多都不是很友好,或者根本没法对外暴露,比如Dubbo服务,因此需要在网关层做一次协议转换,将用户的HTTP协议请求,在网关层转换成底层对应的协议,比如HTTP - Dubbo, 但这里需要注意很多问题,比如参数类型,如果类型搞错了,导致转换出问题,而日志又不够详细的话,问题会很难定位。
服务发现
网关作为流量的入口,负责请求的转发,但首先需要知道转发给谁,如何寻址,这里有几种方式:
服务调用
网关由于对接很多种不同的协议,因此可能需要实现很多种调用方式,比如HTTP、Dubbo等,基于性能原因,最好都采用异步的方式,而Http、Dubbo都是支持异步的,比如apache就提供了基于NIO实现的异步HTTP客户端。
因为网关会涉及到很多异步调用,比如拦截器、HTTP客户端、dubbo、redis等,因此需要考虑下异步调用的方式,如果基于回调或者future的话,代码嵌套会很深,可读性很差,可以参考zuul和spring cloud gateway的方案,基于响应式进行改造。
优雅下线
性能
网关作为所有流量的入口,性能是重中之重,早期大部分网关都是基于同步阻塞模型构建的,比如Zuul 1.x。但这种同步的模型我们都知道,每个请求/连接都会占用一个线程,而线程在JVM中是一个很重的资源,比如Tomcat默认就是200个线程,如果网关隔离没有做好的话,当发生网络延迟、FullGC、第三方服务慢等情况造成上游服务延迟时,线程池很容易会被打满,造成新的请求被拒绝,但这个时候其实线程都阻塞在IO上,系统的资源被没有得到充分的利用。另外一点,容易受网络、磁盘IO等延迟影响。需要谨慎设置超时时间,如果设置不当,且服务隔离做的不是很完善的话,网关很容易被一个慢接口拖垮。
而异步化的方式则完全不同,通常情况下一个CPU核启动一个线程即可处理所有的请求、响应。一个请求的生命周期不再固定于一个线程,而是会分成不同的阶段交由不同的线程池处理,系统的资源能够得到更充分的利用。而且因为线程不再被某一个连接独占,一个连接所占用的系统资源也会低得多,只是一个文件描述符加上几个监听器等,而在阻塞模型中,每条连接都会独占一个线程,而线程是一个非常重的资源。对于上游服务的延迟情况,也能够得到很大的缓解,因为在阻塞模型中,慢请求会独占一个线程资源,而异步化之后,因为单条连接所占用的资源变的非常低,系统可以同时处理大量的请求。
如果是JVM平台,Zuul 2、Spring Cloud gateway等都是不错的异步网关选型,另外也可以基于Netty、Spring Boot2.x的webflux、vert.x或者servlet3.1的异步支持进行自研。
缓存
对于一些幂等的get请求,可以在网关层面根据业务方指定的缓存头做一层缓存,存储到Redis等二级缓存中,这样一些重复的请求,可以在网关层直接处理,而不用打到业务线,降低业务方的压力,另外如果业务方节点挂掉,网关也能够返回自身的缓存。
限流
限流对于每个业务组件来说,可以说都是一个必须的组件,如果限流做不好的话,当请求量突增时,很容易导致业务方的服务挂掉,比如双11、双12等大促时,接口的请求量是平时的数倍,如果没有评估好容量,又没有做限流的话,很容易服务整个不可用,因此需要根据业务方接口的处理能力,做好限流策略,相信大家都见过淘宝、百度抢红包时的降级页面。
因此一定要在接入层做好限流策略,对于非核心接口可以直接将降级掉,保障核心服务的可用性,对于核心接口,需要根据压测时得到的接口容量,制定对应的限流策略。限流又分为几种:
稳定性
稳定性是网关非常重要的一环,监控、告警需要做的很完善才可以,比如接口调用量、响应时间、异常、错误码、成功率等相关的监控告警,还有线程池相关的一些,比如活跃线程数、队列积压等,还有些系统层面的,比如CPU、内存、FullGC这些基本的。
网关是所有服务的入口,对于网关的稳定性的要求相对于其他服务会更高,最好能够一直稳定的运行,尽量少重启,但当新增功能、或者加日志排查问题时,不可避免的需要重新发布,因此可以参考zuul的方式,将所有的核心功能都基于不同的拦截器实现,拦截器的代码采用Groovy编写,存储到数据库中,支持动态加载、编译、运行,这样在出了问题的时候能够第一时间定位并解决,并且如果网关需要开发新功能,只需要增加新的拦截器,并动态添加到网关即可,不需要重新发布。
熔断降级
熔断机制也是非常重要的一项。若某一个服务挂掉、接口响应严重超时等发生,则可能整个网关都被一个接口拖垮,因此需要增加熔断降级,当发生特定异常的时候,对接口降级由网关直接返回,可以基于Hystrix或者Resilience4j实现。
日志
由于所有的请求都是由网关处理的,因此日志也需要相对比较完善,比如接口的耗时、请求方式、请求IP、请求参数、响应参数(注意脱敏)等,另外由于可能涉及到很多微服务,因此需要提供一个统一的traceId方便关联所有的日志,可以将这个traceId置于响应头中,方便排查问题。
隔离
比如线程池、http连接池、redis等应用层面的隔离,另外也可以根据业务场景,将核心业务部署带单独的网关集群,与其他非核心业务隔离开。
网关管控平台
这块也是非常重要的一环,需要考虑好整个流程的用户体验,比如接入到网关的这个流程,能不能尽量简化、智能,比如如果是dubbo接口,我们可以通过到git仓库中获取源码、解析对应的类、方法,从而实现自动填充,尽量帮用户减少操作;另外接口一般是从测试-预发-线上,如果每次都要填写一遍表单会非常麻烦,我们能不能自动把这个事情做掉,另外如果网关部署到了多个可用区、甚至不同的国家,那这个时候,我们还需要接口数据同步功能,不然用户需要到每个后台都操作一遍,非常麻烦。
这块个人的建议是直接参考阿里云、aws等提供的网关服务即可,功能非常全面。
其他
其他还有些需要考虑到的点,比如接口mock,文档生成、sdk代码生成、错误码统一、服务治理相关的等,这里就不累述了。
目前的网关还是中心化的架构,所有的请求都需要走一次网关,因此当大促或者流量突增时,网关可能会成为性能的瓶颈,而且当网关接入的大量接口的时候,做好流量评估也不是一项容易的工作,每次大促前都需要跟业务方一起针对接口做压测,评估出大致的容量,并对网关进行扩容,而且网关是所有流量的入口,所有的请求都是由网关处理,要想准确的评估出容量很复杂。可以参考目前比较流行的ServiceMesh,采用去中心化的方案,将网关的逻辑下沉到sidecar中,
sidecar和应用部署到同一个节点,并接管应用流入、流出的流量,这样大促时,只需要对相关的业务压测,并针对性扩容即可,另外升级也会更平滑,中心化的网关,即使灰度发布,但是理论上所有业务方的流量都会流入到新版本的网关,如果出了问题,会影响到所有的业务,但这种去中心化的方式,可以先针对非核心业务升级,观察一段时间没问题后,再全量推上线。另外ServiceMesh的方案,对于多语言支持也更友好。
API网关跨一个或多个内部API提供单个统一的API入口点。 通常还包括限制访问速率限制和有关安全性等特点。 诸如Tyk.io的API管理层增加了额外的功能,例如分析,货币化和生命周期管理。
基于微服务的架构可以具有10到100个或更多个服务。 API网关可以为外部消费者提供统一的入口点,而与内部微服务的数量和组成无关。
API网关对于微服务的好处:
1、防止内部关注暴露给外部客户端
API网关将外部公共API与内部微服务API分开,允许添加微服务和更改边界。 其结果是能够在不对外部绑定客户端产生负面影响的情况下重构和适当大小的微服务。 它还通过为您的所有微服务提供单一入口点,对客户端隐藏了服务发现和版本控制详细信息。
2、为您的微服务添加额外的安全层
API网关通过提供一个额外的保护层来防止恶意攻击,例如SQL注入,XML解析器漏洞和拒绝服务(DoS)攻击。
3、支持混合通信协议
虽然面向外部的API通常提供基于HTTP或REST的API,但是内部微服务可以从使用不同的通信协议中受益。 协议可能包括的Protobuf或AMQP ,或者用SOAP,JSON-RPC或XML-RPC系统集成。 API网关可以在这些不同的协议之上提供外部的,统一的基于REST的API,允许团队选择最适合内部架构的API。
4、降低微服务复杂性
如果微服务具有共同的关注点,例如使用API令牌的授权,访问控制实施和速率限制。 每个这些关注可以通过要求每个服务都实现它们,但这为微服务的开发增加更多的时间成本。 API网关将从您的代码中删除这些问题,允许您的微服务关注手头的任务。
5、微服务模拟和虚拟化
通过将微服务API与外部API分离,您可以模拟或虚拟化服务,以验证设计要求或协助集成测试。
API网关的服务对象
API网关可以为Web端、APP提供API访问,也可以给物联网设备提供API接口。另外致力于开发生态的企业还会为一些合作伙伴提供API网关,供其调用通用的微服务。对于可以提供数据或算法服务的企业,可以在云市场的API网关注册自己的API,从而对外提供服务。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~