从0开始学习大数据之java spark编程入门与项目实践

网友投稿 296 2022-12-20


从0开始学习大数据之java spark编程入门与项目实践

本文实例讲述了大数据java spark编程。分享给大家供大家参考,具体如下:

上节搭建好了eclipse spark编程环境

在测试运行scala 或java 编写spark程序 ,在eclipse平台都可以运行,但打包导出jar,提交 spark-submit运行,都不能执行,最后确定是版本问题,就是你在eclipse调试的spark版本需和spark-submit 提交spark的运行版本一致,还有就是scala版本一致,才能正常运行。

以下是java spark程序运行

1.新建maven项目 SparkApps

注意 pom.xml 中spark-core 的版本

我原来调试使用的是

org.apache.spark

spark-core_2.12

2.4.0

打包成jar到提交 spark-submit 运行,总是提示错误,因为spark下载的是spark-1.6.0-cdh5.16.0版本的,与eclipse中spark2.4.0版本有些语句用法不一致。

2. 项目中新建类JavaWordCount

package com.linbin.SparkApps;

import scala.Tuple2;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.FlatMapFunction;

import org.apache.spark.api.java.function.Function2;

import org.apache.spark.api.java.function.PairFunction;

import java.util.Arrays;

import java.util.Iterator;

import java.util.List;

import java.util.regex.Pattern;

public class JavaWordCount {

private static final Pattern SPACE = Pattern.compile(" ");

public static void main(String[] args) throws Exception {

if (args.length < 1) {

System.err.println("Usage: JavaWordCount ");

System.exit(1);

}

SparkConf sparkConf = new SparkConf().setAppName("JavaWordCount");

// setMaster 在打包导出时无需设定

sparkConf.setMaster("local[2]");

JavaSparkContext ctx = new JavaSparkContext(sparkConf);

JavaRDD words = lines.flatMap(new FlatMapFunction() {

@Override

/* 以下spark2.X

*

* public Iterator call(String s) {

* return (Arrays.asList(SPACE.split(s)).iterator();

* }

*/

// 以下spark1.X

public Iterable call(String s) throws Exception {

return Arrays.asList(SPACE.split(s));

}

});

JavaPairRDD ones = words.mapToPair(new PairFunction() {

@Override

public Tuple2 call(String s) {

return new Tuple2(s, 1);

}

});

JavaPairRDD counts = ones.reduceByKey(new Function2() {

@Override

public Integer call(Integer i1, Integer i2) {

return i1 + i2;

}

});

List> output = counts.collect();

for (Tuple2,?> tuple : output) {

System.out.println(tuple._1() + ": " + tuple._2());

}

ctx.stop();

ctx.close();

}

}

3. 在eclipse中运行 as  “java  Application”

正常输出结果

4. Eclipse中打包导出为 sparkapps.jar

5. 提交给spark中执行

[root@centos7 bin]# ./spark-submit --master spark://centos7:7077 --class com.linbin.SparkApps.JavaWordCount /home/linbin/workspace/sparkapps.jar hdfs://centos7:8020/hello.txt

6. 执行结果,正常输出

[root@centos7 bin]# ./spark-submit --master spark://centos7:7077 --class com.linbin.SparkApps.JavaWordCount /home/linbin/workspace/sparkapps.jar hdfs://centos7:8020/hello.txt

18/11/29 14:37:38 INFO spark.SparkContext: Running Spark version 1.6.0

18/11/29 14:37:39 INFO spark.SecurityManager: Changing view acls to: root

18/11/29 14:37:39 INFO spark.SecurityManager: Changing modify acls to: root

18/11/29 14:37:39 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root)

18/11/29 14:37:39 INFO util.Utils: Successfully started service 'sparkDriver' on port 40507.

18/11/29 14:37:39 INFO slf4j.Slf4jLogger: Slf4jLogger started

18/11/29 14:37:39 INFO Remoting: Starting remoting

18/11/29 14:37:39 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@172.16.48.71:35776]

18/11/29 14:37:39 INFO Remoting: Remoting now listens on addresses: [akka.tcp://sparkDriverActorSystem@172.16.48.71:35776]

18/11/29 14:37:39 INFO util.Utils: Successfully started service 'sparkDriverActorSystem' on port 35776.

18/11/29 14:37:39 INFO spark.SparkEnv: Registering MapOutputTracker

18/11/29 14:37:39 INFO spark.SparkEnv: Registering BlockManagerMaster

18/11/29 14:37:39 INFO storage.DiskBlockManager: Created local directory at /tmp/blockmgr-dd9c0da7-1d22-45ba-9f9d-05d027801ccc

18/11/29 14:37:39 INFO storage.MemoryStore: MemoryStore started with capacity 530.0 MB

18/11/29 14:37:39 INFO spark.SparkEnv: Registering OutputCommitCoordinator

18/11/29 14:37:39 INFO server.Server: jetty-8.y.z-SNAPSHOT

18/11/29 14:37:39 INFO server.AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040

18/11/29 14:37:39 INFO util.Utils: Successfully started service 'SparkUI' on port 4040.

18/11/29 14:37:39 INFO ui.SparkUI: Started SparkUI at http://172.16.48.71:4040

18/11/29 14:37:39 INFO spark.SparkContext: Added JAR file:/home/linbin/workspace/sparkapps.jar at spark://172.16.48.71:40507/jars/sparkapps.jar with timestamp 1543473459974

18/11/29 14:37:40 INFO client.AppClient$ClientEndpoint: Connecting to master spark://centos7:7077...

18/11/29 14:37:40 INFO cluster.SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20181129143740-0003

18/11/29 14:37:40 INFO client.AppClient$ClientEndpoint: Executor added: app-20181129143740-0003/0 on worker-20181129113634-172.16.48.71-34880 (172.16.48.71:34880) with 2 cores

18/11/29 14:37:40 INFO cluster.SparkDeploySchedulerBackend: Granted executor ID app-20181129143740-0003/0 on hostPort 172.16.48.71:34880 with 2 cores, 1024.0 MB RAM

18/11/29 14:37:40 INFO client.AppClient$ClientEndpoint: Executor updated: app-20181129143740-0003/0 is now RUNNING

18/11/29 14:37:40 INFO util.Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 40438.

18/11/29 14:37:40 INFO netty.NettyBlockTransferService: Server created on 40438

18/11/29 14:37:40 INFO storage.BlockManagerMaster: Trying to register BlockManager

18/11/29 14:37:40 INFO storage.BlockManagerMasterEndpoint: Registering block manager 172.16.48.71:40438 with 530.0 MB RAM, BlockManagerId(driver, 172.16.48.71, 40438)

18/11/29 14:37:40 INFO storage.BlockManagerMaster: Registered BlockManager

18/11/29 14:37:40 INFO cluster.SparkDeploySchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0

18/11/29 14:37:40 INFO storage.MemoryStore: Block broadcast_0 stored as values in memory (estimated size 156.5 KB, free 529.9 MB)

18/11/29 14:37:40 INFO storage.MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 16.5 KB, free 529.8 MB)

18/11/29 14:37:40 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on 172.16.48.71:40438 (size: 16.5 KB, free: 530.0 MB)

18/11/29 14:37:40 INFO spark.SparkContext: Created broadcast 0 from textFile at JavaWordCount.java:45

18/11/29 14:37:41 INFO mapred.FileInputFormat: Total input paths to process : 1

18/11/29 14:37:41 INFO spark.SparkContext: Starting job: collect at JavaWordCount.java:103

18/11/29 14:37:41 INFO scheduler.DAGScheduler: Registering RDD 3 (mapToPair at JavaWordCount.java:73)

18/11/29 14:37:41 INFO scheduler.DAGScheduler: Got job 0 (collect at JavaWordCount.java:103) with 1 output partitions

18/11/29 14:37:41 INFO scheduler.DAGScheduler: Final stage: ResultStage 1 (collect at JavaWordCount.java:103)

18/11/29 14:37:41 INFO scheduler.DAGScheduler: Parents of final stage: List(ShuffleMapStage 0)

18/11/29 14:37:41 INFO scheduler.DAGScheduler: Missing parents: List(ShuffleMapStage 0)

18/11/29 14:37:41 INFO scheduler.DAGScheduler: Submitting ShuffleMapStage 0 (MapPartitionsRDD[3] at mapToPair at JavaWordCount.java:73), which has no missing parents

18/11/29 14:37:41 INFO storage.MemoryStore: Block broadcast_1 stored as values in memory (estimated size 4.8 KB, free 529.8 MB)

18/11/29 14:37:41 INFO storage.MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 2.7 KB, free 529.8 MB)

18/11/29 14:37:41 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on 172.16.48.71:40438 (size: 2.7 KB, free: 530.0 MB)

18/11/29 14:37:41 INFO spark.SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:1004

18/11/29 14:37:41 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ShuffleMapStage 0 (MapPartitionsRDD[3] at mapToPair at JavaWordCount.java:73) (first 15 tasks are for partitions Vector(0))

18/11/29 14:37:41 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 1 tasks

18/11/29 14:37:41 INFO cluster.Sparhttp://kDeploySchedulerBackend: Registered executor NettyRpcEndpointRef(null) (centos7:35702) with ID 0

18/11/29 14:37:41 INFOmNejsflQS scheduler.TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, centos7, executor 0, partition 0, NODE_LOCAL, 2175 bytes)

18/11/29 14:37:41 INFO storage.BlockManagerMasterEndpoint: Registering block manager centos7:34022 with 530.0 MB RAM, BlockManagerId(0, centos7, 34022)

18/11/29 14:37:42 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on centos7:34022 (size: 2.7 KB, free: 530.0 MB)

18/11/29 14:37:42 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on centos7:34022 (size: 16.5 KB, free: 530.0 MB)

18/11/29 14:37:42 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 1146 ms on centos7 (executor 0) (1/1)

18/11/29 14:37:42 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool

18/11/29 14:37:42 INFO scheduler.DAGScheduler: ShuffleMapStage 0 (mapToPair at JavaWordCount.java:73) finished in 1.445 s

18/11/29 14:37:42 INFO scheduler.DAGScheduler: looking for newly runnable stages

18/11/29 14:37:42 INFO scheduler.DAGScheduler: running: Set()

18/11/29 14:37:42 INFO scheduler.DAGScheduler: waiting: Set(ResultStage 1)

18/11/29 14:37:42 INFO scheduler.DAGScheduler: failed: Set()

18/11/29 14:37:42 INFO scheduler.DAGScheduler: Submitting ResultStage 1 (ShuffledRDD[4] at reduceByKey at JavaWordCount.java:90), which has no missing parents

18/11/29 14:37:42 INFO storage.MemoryStore: Block broadcast_2 stored as values in memory (estimated size 2.9 KB, free 529.8 MB)

18/11/29 14:37:42 INFO storage.MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 1754.0 B, free 529.8 MB)

18/11/29 14:37:42 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in memory on 172.16.48.71:40438 (size: 1754.0 B, free: 530.0 MB)

18/11/29 14:37:42 INFO spark.SparkContext: Created broadcast 2 from broadcast at DAGScheduler.scala:1004

18/11/29 14:37:42 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 1 (ShuffledRDD[4] at reduceByKey at JavaWordCount.java:90) (first 15 tasks are for partitions Vector(0))

18/11/29 14:37:42 INFO scheduler.TaskSchedulerImpl: Adding task set 1.0 with 1 tasks

18/11/29 14:37:42 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 1.0 (TID 1, centos7, executor 0, partition 0, NODE_LOCAL, 1949 bytes)

18/11/29 14:37:42 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in memory on centos7:34022 (size: 1754.0 B, free: 530.0 MB)

18/11/29 14:37:42 INFO spark.MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 0 to centos7:35702

18/11/29 14:37:42 INFO spark.MapOutputTrackerMaster: Size of output statuses for shuffle 0 is 137 bytes

18/11/29 14:37:42 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 1.0 (TID 1) in 70 ms on centos7 (executor 0) (1/1)

18/11/29 14:37:42 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool

18/11/29 14:37:42 INFO scheduler.DAGScheduler: ResultStage 1 (collect at JavaWordCount.java:103) finished in 0.074 s

18/11/29 14:37:42 INFO scheduler.DAGScheduler: Job 0 finished: collect at JavaWordCount.java:103, took 1.603764 s

went: 1

driver: 1

The: 3

hitting: 1

road,: 1

avoid: 1

colorful: 1

had: 1

highway,: 1

basket: 1

across: 1

guilty: 1

A: 1

blissfully: 1

Easter: 1

he: 1

in: 1

eggs: 1

dead.: 1

side: 1

cry.: 1

over: 2

Bunny,: 1

Much: 1

along: 1

unfortunately: 1

man: 2

what: 1

out: 1

felt: 1

lover,: 1

swerved2: 1

well: 1

road.: 1

the: 12

got: 1

his: 2

He: 1

hit.: 1

began: 1

animal: 1

was: 3

front: 1

a: 1

rabbit: 1

when: 1

sensitive: 1

pulled: 1

car: 1

all: 1

carrying: 1

to: 5

driver,: 1

as: 2

: 1

hopping1: 1

see: 1

of: 5

driving: 1

become: 1

basket.: 1

an: 1

place.: 1

saw: 1

but: 1

jumped: 1

and: 3

Bunny: 3

middle: 1

flying: 1

being: 1

dismay,: 1

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/metrics/json,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/stages/stage/kill,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/api,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/static,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/executors/threadDump/json,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/executors/threadDump,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/executors/json,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/executors,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/environment/json,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/environment,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/storage/rdd/json,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/storage/rdd,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/storage/json,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/storage,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/stages/pool/json,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/stages/pool,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/stages/stage/json,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/stages/stage,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/stages/json,null}

18/11/29 14:37:42 INFO handler.ContextHandler: shttp://topped o.s.j.s.ServletContextHandler{/stages,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/jobs/job/json,null}

18/11/29 14:37:42 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/jobs/job,null}

18/11/29 14:37:43 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/jobs/json,null}

18/11/29 14:37:43 INFO handler.ContextHandler: stopped o.s.j.s.ServletContextHandler{/jobs,null}

18/11/29 14:37:43 INFO ui.SparkUI: Stopped Spark web UI at http://172.16.48.71:4040

18/11/29 14:37:43 INFO cluster.SparkDeploySchedulerBackend: Shutting down all executors

18/11/29 14:37:43 INFO cluster.SparkDeploySchedulerBackend: Asking each executor to shut down

18/11/29 14:37:43 INFO spark.MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!

7. 在浏览器可以看到作业记录

更多关于java算法相关内容感兴趣的读者可查看本站专题:《Java数据结构与算法教程》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》和《Java缓存操作技巧汇总》

希望本文所述对大家java程序设计有所帮助。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:在线调试接口工具(apidebug接口调试工具)
下一篇:SpringMVC自定义参数绑定实现详解
相关文章

 发表评论

暂时没有评论,来抢沙发吧~