Spring Cloud Feign组件实例解析

网友投稿 305 2022-12-22


Spring Cloud Feign组件实例解析

这篇文章主要介绍了Spring Cloud Feign组件实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

采用Spring Cloud微服务框架后,经常会涉及到服务间调用,服务间调用采用了Feign组件。

由于之前有使用dubbo经验。dubbo的负载均衡策略(轮训、最小连接数、随机轮训、加权轮训),dubbo失败策略(快速失败、失败重试等等),

所以Feign负载均衡策略的是什么? 失败后是否会重试,重试策略又是什么?带这个疑问,查了一些资料,最后还是看了下代码。毕竟代码就是一切

Spring boot集成Feign的大概流程:

1、利用FeignAutoConfiguration自动配置。并根据EnableFeignClients 自动注册产生Feign的代理类。

2、注册方式利用FeignClientFactoryBean,熟悉Spring知道FactoryBean 产生bean的工厂,有个重要方法getObject产生FeignClient容器bean

3、同时代理类中使用hystrix做资源隔离,Feign代理类中 构造 RequestTemplate ,RequestTemlate要做的向负载均衡选中的server发送http请求,并进行编码和解码一系列操作。

下面只是粗略的看了下整体流程,先有整体再有细节吧,下面利用IDEA看下细节:

一、Feign失败重试

SynchronousMethodHandler的方法中的处理逻辑:

@Override

public Object invoke(Object[] argv) throws Throwable {

RequestTemplate template = buildTemplateFromArgs.create(argv);

Retryer retryer = this.retryer.clone();

while (true) {

try {

return executeAndDecode(template);

} catch (RetryableException e) {

retryer.continueOrPropagate(e);

if (logLevel != Logger.Level.NONE) {

logger.logRetry(metadata.configKey(), logLevel);

}

continue;

}

}

}

上面的逻辑很简单。构造 template 并去进行服务间的http调用,然后对返回结果进行解码

当抛出 RetryableException 后,异常逻辑是否重试? 重试多少次? 带这个问题,看了retryer.continueOrPropagate(e);

具体逻辑如下:

public void continueOrPropagate(RetryableException e) {

if (attempt++ >= maxAttempts) {

throw e;

}

long interval;

if (e.retryAfter() != null) {

interval = e.retryAfter().getTime() - currentTimeMillis();

if (interval > maxPeriod) {

interval = maxPeriod;

}

if (interval < 0) {

return;

}

} else {

interval = nextMaxInterval();

}

try {

Thread.sleep(interval);

} catch (InterruptedException ignored) {

Thread.currentThread().interrupt();

}

sleptForMillis += interval;

}

当重试次数大于默认次数5时候,直接抛出异常,不在重试

否则每隔一段时间 默认值最大1ms 后重试一次。

这就Feign这块的重试这块的粗略逻辑,由于之前工作中一直使用dubbo。同样是否需要将生产环境中重试操作关闭?

思考:之前dubbo生产环境的重试操作都会关闭。原因有几个:

一般第一次失败,重试也会失败,极端情况下不断的重试,会占用大量dubbo连接池,造成连接池被打满,影响核心功能

也是比较重要的一点原因,重试带来的业务逻辑的影响,即如果接口不是幂等的,重试会带来业务逻辑的错误,引发问题

二、Feign负载均衡策略

那么负载均衡的策略又是什么呢?由上图中可知 executeAndDecode(template)

Object executeAndDecode(RequestTemplate template) throws Throwable {

Request request = targetRequest(template);

if (logLevel != Logger.Level.NONE) {

logger.logRequest(metadata.configKey(), logLevel, request);

}

Response response;

long start = System.nanoTime();

try {

response = client.execute(request, options);

// ensure the request is set. TODO: remove in Feign 10

response.toBuilder().request(request).build();

} catch (IOException e) {

if (logLevel != Logger.Level.NONE) {

logger.logIOException(metadata.configKey(), logLevel, e, elapsedTime(start));

}

throw errorExecuting(request, e);

}

long elapsedTime = TimeUnit.NANOSECONDS.toMillis(System.nanoTime() - start);

boolean shouldClose = true;

try {

if (logLevel != Logger.Level.NONE) {

response =

logger.logAndRebufferResponse(metadata.configKey(), logLevel, response, elapsedTime);

// ensure the request is set. TODO: remove in Feign 10

response.toBuilder().request(request).build();

}

if (Response.class == metadata.returnType()) {

if (response.body() == null) {

return response;

}

if (response.body().length() == null ||

response.body().length() > MAX_RESPONSE_BUFFER_SIZE) {

shouldClose = false;

return response;

}

// Ensure the response body is disconnected

byte[] bodyData = Util.toByteArray(response.body().asInputStream());

return response.toBuilder().body(bodyData).build();

}

if (response.status() >= 200 && response.status() < 300) {

if (void.class == metadata.returnType()) {

return null;

} else {

returnhttp:// decode(response);

}

} else if (decode404 && response.status() == 404 && void.class != metadata.returnType()) {

return decode(response);

} else {

throw errorDecoder.decode(metadata.configKey(), response);

}

} catch (IOException e) {

if (logLevel != Logger.Level.NONE) {

logger.logIOException(metadata.configKey(), logLevel, e, elapsedTime);

}

throw errorReading(request, response, e);

} finally {

if (shouldClose) {

ensureClosed(response.body());

}

}

}

概括的说主要做了两件事:发送HTTP请求,解码响应数据

想看的负载均衡应该在11行 response = client.execute(request, options); 而client的实现方式有两种 Default、LoadBalancerFeignClient

猜的话应该是LoadBalancerFeignClient,带这个问题去看源码(其实个人更喜欢带着问题看源码,没有目的一是看很难将复杂的源码关联起来,二是很容易迷失其中)

果然通过一番查找发现 Client 实例就是LoadBalancerFeignClient,而设置这个Client就是通过上面说的FeignClientFactoryBean的getObject方法中设置的,具体不说了

下面重点看LoadBalancerFeignClient execute(request, options)

@Override

public Response execute(Request request, Request.Options options) throws IOException {

try {

URI asUri = URI.create(request.url());

String clientName = asUri.getHost();

URI uriWithoutHost = cleanUrl(request.url(), clientName);

FeignLoadBalancer.RibbonRequest ribbonRequest = new FeignLoadBalancer.RibbonRequest(

this.delegate, request, uriWithoutHost);

IClientConfig requestConfig = getClientConfig(options, clientName);

return lbClient(clientName).executeWithLoadBalancer(ribbonRequest,

requestConfig).toResponse();

}

catch (ClientException e) {

IOException io = findIOException(e);

if (io != null) {

throw io;

}

throw new RuntimeException(e);

}

}

通过几行代码比较重要的点RibbonRequest ,原来Feign负载均衡还是通过Ribbon实现的,那么Ribbo又是如何实现负载均衡的呢?

public Observable submit(final ServerOperation operation) {

final ExecutionInfoContext context = new ExecutionInfoContext();

if (listenerInvoker != null) {

try {

listenerInvoker.onExecutionStart();

} catch (AbortExecutionException e) {

return Observable.error(e);

}

}

final int maxRetrysSame = retryHandler.getMaxRetriesOnSameServer();

final int maxRetrysNext = retryHandler.getMaxRetriesOnNextServer();

// Use the load balancer

Observable o =

(server == null ? selectServer() : Observable.just(server))

.concatMap(new Func1>() {

@Override

// Called for each server being selected

public Observable call(Server server) {

context.setServer(server);

final ServerStats stats = loadBalancerContext.getServerStats(server);

// Called for each attempt and retry

Observable o = Observable

.just(server)

.concatMap(new Func1>() {

@Override

public Observable call(final Server server) {

context.incAttemptCount();

loadBalancerContext.noteOpenConnection(stats);

if (listenerInvoker != null) {

try {

listenerInvoker.onStartWithServer(context.toExecutionInfo());

} catch (AbortExecutionException e) {

return Observable.error(e);

}

}

final Stopwatch tracer = loadBalancerContext.getExecuteTracer().start();

return operation.call(server).doOnEach(new Observer() {

private T entity;

@Override

public void onCompleted() {

recordStats(tracer, stats, entity, null);

// TODO: What to do if onNext or onError are never called?

}

@Override

public void onError(Throwable e) {

recordStats(tracer, stats, null, e);

logger.debug("Got error {} when executed on server {}", e, server);

if (listenerInvoker != null) {

listenerInvoker.onExceptionWithServer(e, context.toExecutionInfo());

}

}

@Override

public void onNext(T entity) {

this.entity = entity;

if (listenerInvoker != null) {

listenerInvoker.onExecutionSuccess(entity, context.toExecutionInfo());

}

}

private void recordStats(Stopwatch tracer, ServerStats stats, Object entity, Throwable exception) {

tracer.stop();

loadBalancerContext.noteRequestCompletion(stats, entity, exception, tracer.getDuration(TimeUnit.MILLISECONDS), retryHandler);

}

});

}

});

if (maxRetrysSame > 0)

o = o.retry(retryPolicy(maxRetrysSame, true));

return o;

}

});

if (maxRetrysNext > 0 && server == null)

o = o.retry(retryPolicy(maxRetrysNext, false));

return o.onErrorResumeNext(new Func1>() {

@Override

public Observable call(Throwable e) {

if (context.getAttemptCount() > 0) {

if (maxRetrysNext > 0 && context.getServerAttemptCount() == (maxRetrysNext + 1)) {

e = new ClientException(ClientException.ErrorType.NUMBEROF_RETRIES_NEXTSERVER_EXCEEDED,

"Number of retries on next server exceeded max " + maxRetrysNext

+ " retries, while making a call for: " + context.getEmpYUServer(), e);

}

else if (maxRetrysSame > 0 && context.getAttemptCount() == (maxRetrysSame + 1)) {

e = new ClientException(ClientException.ErrorType.NUMBEROF_RETRIES_EXEEDED,

"Number of retries exceeded max " + maxRetrysSame

+ " retries, while making a call for: " + context.getServer(), e);

}

}

if (listenerInvoker != null) {

listenerInvoker.onExecutionFailed(e, context.toFinalExecutionInfo());

}

return Observable.error(e);

}

});

}

通过上面代码分析,发现Ribbon和Hystrix一样都是利用了rxjava看来有必要掌握下rxjava了又。这里面 比较重要的就是17行,

selectServer() 方法选择指定的Server,负载均衡的策略主要是有ILoadBalancer接口不同实现方式:

BaseLoadBalancer采用的规则为RoundRobinRule 轮训规则

DynamicServerListLoadBalancer继承了BaseLoadBalancer,主要运行时改变Server列表

NoOpLoadBalancer 什么操作都不做

ZoneAwareLoadBalancer 功能主要是根据区域Zone分组的实例列表


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:简单了解SpringCloud运行原理
下一篇:Spring Security OAuth2 token权限隔离实例解析
相关文章

 发表评论

暂时没有评论,来抢沙发吧~