java操作elasticsearch的案例解析

网友投稿 390 2022-12-23


java操作elasticsearch的案例解析

这篇文章主要介绍了java操作elasticsearch的案例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

到目前为止,我们一直都是使用RESTful风格的 API操作elasticsearch服务,但是通过我们之前的学习知道,elasticsearch提供了很多语言的客户端用于操作elasticsearch服务,例如:java、python、.net、javascript、php等。而我们此次就学习如何使用java语言来操作elasticsearch服务。在elasticsearch的官网上提供了两种java语言的API,一种是Java Transport Client,一种是Java REST Client。

而Java REST Client又分为Java Low Level REST Client和Java High Level REST Client,Java High Level REST Client是在Java Low Level REST Client的基础上做了封装,使其以更加面向对象和操作更加便利的方式调用elasticsearch服务。

官方推荐使用Java High Level REST Client,因为在实际使用中,Java Transport Client在大并发的情况下会出现连接不稳定的情况。

那接下来我们就来看看elasticsearch提供的Java High Level REST Client(以下简称高级REST客户端)的一些基础的操作,跟多的操作大家自行阅读elasticsearch的官方文档:https://elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high.html在官网上已经对高级REST客户端的各种API做了很详细的使用说明,我们这篇文章主要还是翻译官网上的内容,先让大家以更友好的中文文档方式入门,等大家熟悉了这些API之后在查阅官网。

1.基本过滤查询

long start = System.currentTimeMillis();

long end = start - 4 * 60 * 60 * 1000;

RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("timestamp").from(end,true).to(start,true);

QueryBuilder s=QueryBuilders.boolQuery().must(rangeQueryBuilder);

QueryBuilder qb=new MatchAllQueryBuilder();

SearchResponse response= elasticsearchTemplate.getClient().prepareSearch("monitoring-cpu").setTypes("cloud-cpu").setQuery(s).setFrom(0)

  .setSize(100).get();

SearchHits searchHits = response.getHits();

for(SearchHit hit:searchHits.getHits()){

  System.out.println(hit.getSourceAsString());

}

2.条件过滤,进然后行分组,对组内数据求平均,然后排行查询

//ES中查询所有主机的监控数据

BoolQueryBuilder uuidsBoolQuery = QueryBuilders.boolQuery();

uuidsBoolQuery.must(QueryBuilders.matchQuery("uuid", uuidStr));

//暂定向前推一天,计算平均

long end = System.currentTimeMillis();

long start = end - 24 * 60 * 60 * 1000;

RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("timestamp").from(start,true).to(end,true);

QueryBuilder timeFilter = QueryBuilders.boolQuery().must(rangeQueryBuilder);

//开始cputop查询

//分组字段是id,排序由多个字段排序组成

TermsAggregationBuilder orderCpu = AggregationBuilders.terms("group-uuid").field("uuid.keyword").order(Terms.Order.compound(

Terms.Order.aggregation("avg-cpuuse", trhttp://ue)

));

//求和字段1

AvgAggregationBuilder avgCpu = AggregationBuilders.avg("avg-cpuuse").field("usage_idle");

orderCpu.subAggregation(avgCpu);//添加到分组聚合请求中

orderCpu.size(10);//top10限制

FilterAggregationBuilder cpuAggregationBuilder = AggregationBuilders.filter("uuidFilter", uuidsBoolQuery)

.subAggregation(AggregationBuilders.filter("timeFilter",timeFilter).subAggregation(orderCpu));

SearchResponse response = elasticsearchTemplate.getClient().prepareSearch("monitoring-cpu").setTypes("cloud-cpu")

.addAggregation(cpuAggregationBuilder)

.get();

InternalFilter uuidFilterRe = response.getAggregations().get("uuidFilter");

InternalFilter timeFilterRe = uuidFilterRe.getAggregations().get("timeFilter");

Terms tms = timeFilterRe.getAggregations().get("group-uuid");

//遍历每一个分组的key

for(Terms.Bucket tbb:tms.getBuckets()){

//获取count的和

InternalAvg avg = tbb.getAggregations().get("avg-cpuuse");

for (Map userResource : userResources) {

Object uuid = userResource.get("uuid");

if (uuid != null && !"".equals(uuid.toString())){

if (uuid.equals(tbb.getKey())){

userResource.put("cupPercent",numberFormat.format(100.0 - avg.getValue()));

cpuSort.add(userResource);

}

}

}

}

3.过滤聚合求平均查询

//ES中查询所有主机的监控数据

BoolQueryBuilder uuidsBoolQuery = QueryBuilders.boolQuery();

uuidsBoolQuery.must(QueryBuilders.matchQuery("uuid", "1,2,4"));

//暂定向前推一天,计算平均

long end = System.currentTimeMillis();

long start = end - 24 * 60 * 60 * 1000;

RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("timestamp").from(start,true).to(end,true);

QueryBuilder timeFilter = QueryBuilders.boolQuery().must(rangeQueryBuilder);

//开始查询Cpu平均使用率

FilterAggregationBuilder cpuAggregationBuilder = AggregationBuilders.filter("uuidFilter", uuidsBoolQuery)

.subAggregation(AggregationBuilders.filter("timeFilter",timeFilter)

.subAggregation(AggregationBuilders.avg("avgCpu").field("usage_idle")));

SearchResponse response = elasticsearchTemplate.getClient().prepareSearch("monitoring-cpu").setTypes("cloud-cpu")

.addAggregation(cpuAggregationBuilder)

.get();

InternalFilter uuidFilterRe = response.getAggregations().get("uuidFilter");

InternalFilter timeFilterRe = uuidFilterRe.getAggregations().get("timeFilter");

InternalAvg avgCpuRe = timeFilterRe.getAggregations().get("avgCpu");

String cpupercent = "0.00";

if (!"NaN".equals(avgCpuRe.getValue() + "")){

cpupercent = numberFormat.format(100.0 - avgCpuRe.getValue());

}


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:java连接mysql底层封装详解
下一篇:IntelliJ IDEA之配置JDK的4种方式(小结)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~